EX

2017年4月11日火曜日

【測定】Repair an oscilloscope CO-1303G

【測定器修理:オシロスコープ CO-1303G】
 【TRIO CO-1303Gとは
 おもにSSBでオンエアするアマチュア無線局のオンエアモニタ用として作られたオシロスコープです。AM局にもたいへん有益だった筈ですが、時代は既にSSB全盛になっていました。  CO-1303Gは1970年代半ばに販売された製品で、定価38,500円だったようです。(TRIOは現在のKENWOOD社)

 何がアマチュア無線局向きだったかと言えば、低周波の2トーン発振器を内蔵しており、さらに送信中の電波をピックアップする回路が付いているからです。 オンエアしながら自局電波をモニタするのにはたいへん便利です。

 当時、一般用として販売されていたCO-1303Dと言うオシロスコープに上記の発振器とRFのピックアップを追加したのがCO-1303Gなのです。 その後はデザインを無線機に合わせた「ステーションモニタ」と称する機器も販売されましたが、それらの前身となる測定器でしょう。

 現在では広帯域なオシロスコープがあるのでありがた味はありません。 しかしその当時はCRT(←リンク)の偏向板にRFを引き込む「直接軸による観測」が一般的なRF波形の測定方法でした。 当時CRTの偏向板が引き出されたオシロスコープはたくさんありましたが、RFのピックアップ回路を作るのが面倒でした。CO-1303Gはその部分を内蔵しています。

 そろそろSSBが全盛になり観測には2トーン発振器が必須だったので合わせて内蔵したのでしょう。 スペアナのようにIMD特性まではわかりませんが、少なくともアンプが飽和してフラット・トップになっているとか、バイアス不適切でクロスオーバー歪が酷いなど、SSB波の品質は十分判断できました。

 オンエア中のSSB波をビジュアルに監視する目的には今でも有効でしょう。 交信中の相手局に「当局の音はどうですか?」なんて聞くよりも遥かに頼りになります。 お世辞抜きで電波の状態がわかりますからね。

                   ☆

 あまり記憶にありませんが20年以上前に中古品を手に入れたものでしょう。 高級なオシロを常時モニタに使うのは勿体ないですし消費電力も大きすぎます。それに冷却ファンがうるさいです。 CO-1303Gのような簡易なオシロは今どき「オシロとしての使い道」はありません。しかしオンエアモニタ用なら十分活躍できそうです。

 購入当時はきちんと使えたと思います。 最近になってシャックの整理中に「発掘」したのですが久しぶりに灯を入れたら不調のようです。 今さら直しても仕方ないとは思ったのですが、半ば興味本位で修理してみました。 結論を言うと、オイルコンの全滅が原因でした。以下はその修理記録です。 あまり役立つとも思えませんが。(笑)

CO-1303Gの回路図
 姉妹機のCO-1303Dの回路図ならネット上で幾つも発見できました。 しかしCO-1303GはHAM用だったので販売台数が少なかったのでしょう。回路図は見付けられませんでした。 幸い手持ちの資料から回路図が見つかったので修理に役立ちました。但し殆どの部分はCO-1303Dと同じでした。

 このオシロは「強制同期式」のオシロスコープです。入力波形を管面に止めて見ることはできるのですが、時間軸(X軸)が校正されないため波形の周期や周波数を読み取ることはできません。それでも波形の良し悪しくらいなら十分良くわかります。 でも「強制同期式」のオシロなんていま一つですよね。(笑)

 ちなみに、今ある殆どのオシロスコープは「起動掃引式(トリガ・スイープ式)」のオシロスコープです。これは時間軸(X軸)が校正され、観測波形の時間周期や周波数を読み取ることが可能になるからです。 その昔、国産オシロのメジャーメーカーであった岩崎通信機は自社の「起動掃引式オシロスコープ」を「シンクロ・スコープ」と称していました。 そのため日本国内においては「シンクロ」の名が一般化していました。 ベテラン・エンジニアが「シンクロで波形を見ろ!」とか言ってましたね。 いまではオシロスコープと言えばすべて「起動掃引式」が常識です。 これはデジタル・オシロでも同様です。 オシロのことを「シンクロ」って言うのは年寄りだけでしょう。

 肝心の故障原因ですが、図の赤で囲ったコンデンサが劣化していました。 オイルコンが4つと電解コンデンサが一つです。 このオシロではオイルコンは図の電源回路部分に4つあるだけです。 従って、オイルコンは全滅と言う訳です。 ネット上にも同様の修理を試みる例が散見されますが、いずれもオイルコンの劣化(絶縁低下)によるものです。

 以前から喚起していますが、オイルコンは年数の経過で必ずと言って良いほど劣化するため使ってはいけない電子部品と言えます。 特殊なものを除けば、すでに生産されておらず、いま売られているのは怪しそうな長期在庫品だけです。そうしたオイルコンはすでに劣化済みか時間の問題です。

 話しは変わりますが、CO-1303Gの特徴は青矢印で示した部分です。図右上のRFピックアップ回路と、図下方のツートーン発振器です。 ツートーン発振器は低周波でありながら、LC共振回路を使った珍しい回路が使われています。GDMのようなコルピッツ型LC発振回路になっています。RF屋さんが設計されたんでしょうかね。(笑) CR回路よりもQが高いため簡単な割に発振波形は良いようです。 発振周波数は概略で1kHzと1.575kHzです。これはSSB送信機テスト用の標準的な周波数です。

 オシロスコープとしてのメイン回路はCO-1303Dとまったく同じで、プリント基板もそっくり流用しています。 垂直軸は入力にFET(2SK30-O)を使ったハイ・インピーダンスな差動形式の広帯域アンプで全段DC結合になっています。 また、水平軸(時間軸)はトランジスタを2石使ったノコギリ波発振器で作っています。 垂直軸アンプの最終段から信号を引き出してノコギリ波発振器に加えることで入力信号に同期が掛かるようになっています。たいへん旨く同期が掛かるので波形観測は容易です。 CRT(いわゆるブラウン管)は直径3インチ(75mm)でフラット管面の丸形です。75ARB31と言う静電偏向型のCRTが使われています。 安価なCRTなのでしょう。内面目盛りではないためスケールは少々読みにくいです。

 十分な輝度を得るためにCRTは1kV以上の高電圧が必要です。電源トランスの500V巻線を高圧整流用ダイオード2本で両波倍電圧整流しています。 偏向板へ直線性の良い十分な偏向電圧を与えるためにY軸の広帯域アンプ、及びX軸の掃引回路の出力部には約200Vの電源電圧を与えています。 このように半導体を使った測定器でありながら、かなりの高電圧を扱うため修理に当たっては感電に十分な注意が必要です。

警告:機器の修理は事故や怪我のリスクを伴います。自身の判断で十分気をつけて行なって下さい。修理の相談はご遠慮を。

 【音がして、やがて輝度低下
 故障確認中の様子です。 電源投入直後は輝線も見えて正常そうなのですが、やがてほとんど光らなくなるのです。

 直後の輝線が見えている状態でも、間欠的に「チッ」と言う放電のような音が聞こえます。やがてその放電音はしなくなりますが、輝線も消失するのです。

 このような症状から考えて、まちがいなく高圧電源部に放電現象などの不具合があるのだろうと当たりをつけました。 このオシロの高圧電源回路はごく単純な回路になっています。 従って部品数も限られるため全部を当たっても数は知れたものです。 放電音がしていたのはC124あるいはC125の0.1μFで耐圧1,000Vのオイルコンデンサらしいことを発見しました。故障箇所を分離するためにテストをしている様子です。一旦CRTを外さないと電源部分にアクセスできません。

C124とC125
 写真上方に見える2つの灰色の筒型が倍電圧整流回路に入っている0.1μF 1,000Vのオイルコンです。トランスの巻線電圧は500Vですから、 耐圧1,000Vなら十分な耐圧があります。

 しかし、オイルコンデンサは高耐圧品とは言っても劣化は免れず、年月が過ぎれば絶縁は低下します。 このオシロも製造されて40年くらい経過した筈ですから劣化してもやむを得ないでしょう。20年くらい前には使えていたのですから良く持った方かも知れません。

 少々耐圧不足なのですが、定格以上の実力(?)を見込んで実験的に630V耐圧のフィルム・コンデンサ(青色)に交換して様子を見ている様子です。(安全を見込めば750V以上の耐圧が必要) 直りそうでしたので、この部分のコンデンサを交換することにしました。 しかし修理に使えるような1kV耐圧のコンデンサは手持ちにありませんのでどうしましょうか・・・・

 【オイル漏れ発見
 いちばん怪しそうだったC125を撤去してみたら、べっとりとオイルが漏れていました。

 絶縁が低下して漏れ電流がかなり流れたのでしょう。だいぶ発熱したらしく、膨張してオイルを噴いたようでした。

 幸い、漏れたのは絶縁性のオイルですから腐食の心配はありません。良く拭き取っておけば大丈夫です。 なお、古い電気製品ではPCB含有のオイルコンが使われていることがあります。 このCO-1303Gが作られたころには使用禁止になっていましたからPCB入りではないでしょう。

 【セラコンで補修
 近所に売っているお店はないし適当な高圧部品も手持ちにはありません。

 あちこち探していて見つかったセラコンを使ってC124とC125を交換しました。 0.1μF/500Vがあったのでシリーズ・パラで0.1μF/1kVを合成しました。 AC500Vの整流ですから十分な耐圧マージンがあるでしょう。

 手前の方に0.1μFで2kV耐圧と1.6kV耐圧のオイルコンが見えます。 これらも怪しいとは思ったのですが、とりあえず使えそうに思えたのでそのままで行くことにしました。もちろん交換用の部品があるなら無条件で取り替えるのですが、すぐには思いつきません。

が、しかし・・・・

オイルコンは全滅
 2つだけの交換では済みませんでした。 暫く通電していたら再び輝度の低下が発生です。 残っていたオイルコンも絶縁劣化で電流がリークしており、特に0.1μF・2kVの方が酷かったようで発熱で触れぬほどの高温度になっていました。物理的な破裂さえありそうなたいへん危険な状態です。

 1kV耐圧のコンデンサでさえ手持ちがないので困ったのですが、630V耐圧の0.068μF(フィルム・コンデンサ)ならたくさんあったのでこれを使いシリーズ・パラで合成することにしました。 安くない部品を12個も使うのはなんですが、まあ使わずに死蔵している方が勿体ないですから。w

 耐圧は1.9kVくらいになるのでまずまずですが容量は約0.045μFなので半減です。しかし負荷電流も少なそうですから何とかなるでしょう。 どうしてもダメなら正規の容量が手に入るまでの応急処置としましょう。 ちょっと心配でしたが様子を見た範囲では十分行けそうでした。

 【1.4kVを確認
 部品交換したら電圧くらいは確認しておきたいものです。 しかし一般的なテスタでは1,000V以上は測れないことが多いと思います。 正常であれば間違いなく1,000V以上の電圧になっているので、1,000Vレンジしかなければスケールアウトしてしまいます。

 デジタル・マルチメータなら1.99kVまで測定できる可能性もありますが、1kV以上は許容していないことが殆どなので耐圧オーバーで壊してしまうリスクを伴います。仕様を良く確認してから測定する方が良いです。

 ここでは5kVレンジがある米軍用テスタ:USM-223で測定しました。ご覧のような目盛りですから細かくは読めませんが、約1,400Vであることがわかりました。 USM-223はごく普通のメーター式テスタです。電子電圧計(VTVM)ではありません。内部抵抗は20kΩ/Vですから5kVレンジは100MΩの内部抵抗になります。十分大きいため、テスタを当てたことで起こる電圧降下による誤差は僅かでしょう。

 500Vの2倍電圧整流ですから整流後の電圧はその約2.8倍になっていれば正常です。従って、約1,400Vなら合格ですね。(注:対シャシ電圧では-1,400Vです。CRTの電源回路は負の高電圧になっています) なお、取扱説明書には約-1,300Vと書いてありました。

 半分くらいしか電圧が出ないときは、高圧整流用ダイオードの故障が疑われます。HVT-22Z-3と言うダイオードが使われていますが入手困難でしょう。 秋月電子通商で売っている「ESJA57-04」(←リンク)と言うダイオードで代替できます。できたらD107とD108の2つとも交換します。 参考ですが、こうした高電圧用ダイオードは順方向電圧が高いため一般的なテスタでは良否判定できません。簡易的には電流計と可変電源を使って調べます。

 【電解コンデンサも怪しいが
 オイルコンよりマシだと思っていますが、電解コンデンサも怪しくなっています。

 200V電源の平滑に使ってある47μF250Vのケミコンでゴム封止部分に液漏れの跡が見つかりました。念のため交換しました。外して確認したらリーク電流は大丈夫そうでしたが液漏れした痕跡のあるコンデンサは信用できません。

 横型(チューブラ型)の手持ちがなかったので、縦型を寝かせて使っています。 振動の多い環境や頻繁な持ち運びには不適当な実装方法ですが、シャックで使うなら支障ないでしょう。面倒ですけれどグルーガンで止めてしまえば一段と安心でしょうね。

ダメだったコンデンサ
 写真のコンデンサがダメになっていました。 結局、オイルコンは全滅です。 この製品が製造されたころ安価な高圧コンデンサと言えばオイルコンだったのでしょう。 何十年もの製品寿命は考えていませんから合理的な部品選定だった筈です。

 オイルを含浸した紙を挟んでアルミ箔を巻いた構造です。 構造・材質上、幾らか吸湿性があってそれが絶縁劣化の原因だと思います。 それでも国産品はかなり優秀だったのだそうです。 輸入機器に使ってあるようなオイルコンは日本の梅雨時を超すだけで劣化してしまう物さえあったそうです。 なお、オイルコン(オイル・コンデンサ)はペーパー・コンデンサ:紙コンデンサとも言われます。 またMPコンデンサも同類です。(MPと言うのはメタライズド・ペーパーの略) すべて紙を絶縁材に使ったコンデンサは絶縁性が悪くなる問題を抱えていることになります。

 今となっては「当面は大丈夫」であってもあえてオイルコン使う時代ではないでしょう。耐圧が必要なら高圧用のセラミック・コンデンサやフィルム・コンデンサを使うべきですね。(笑)

 低圧部分のケミコンにも劣化はあるかも知れません。 今のところ大丈夫そうですが、次々に壊れるかも知れません。 基板を点検していたら半導体のリード線が銀メッキの硫化で黒くなっていました。こちらも劣化の心配があります。 内部はホコリの堆積もなく、奇麗でしたが40年前の製品ですからいつどこが壊れても不思議ではありません。

 【ツートーン発振器
 修理とは関係ありませんが、CO-1303Gの特徴部分を見ておきましょう。 パネル面から見て右側後方に実装された2トーン発振器の基板です。 緑色の円筒が発振回路のコイルです。

 裏面からマイナスドライバを調整穴に差し込んで、2トーンのバランスと出力レベルが調整できるようになっています。

 SSB送信機(トランシーバ)の健康診断に2トーン発振器は必須です。 オシロスコープをシャックにおくようなHAMなら持っていてしかるべきです。 今なら2トーン発振器はOP-Ampを使って簡単に自作できます。 あえてこうした機器を探す必要はありません。  CO-1303Gの発振波形はオシロでの観測用としては十分そうでしたが、スペアナでの観測用には満足できないと思います。 歪率の調整もできないので簡易な観測用と割り切るべきです。

RFピックアップ回路
 電力の大きな送信機から安全にRF信号を引き出すのは意外に難しいものです。 このピックアップ部はCRTの直近に置くことでRF信号を長く配線で引き回さないことを前提にうまく作ってあります。

 JARLやARRLのハンドブックなどを見るとM結合で取出す例が載っています。 使い物にはなりますが、あまりスマートな方法ではありませんでした。

 この回路ではC結合で直接ピックアップし、さらに直列容量(結合容量)をスイッチで切り替えることで適切な観測振幅になるよう考えてあります。 HF帯から50MHzあたりで使うのならアンテナ系のSWRにはあまり影響を与えません。

 この部分は自作でも真似できそうですが、ピックアップ部はオシロの近くに置かなくてはなりません。 写真下の部分に見える2つのM型コネクタに送信機とアンテナあるいはダミーロードを繋ぎます。 上の左方にあるRCAジャックは低周波2トーン信号の出力端子です。

                  ☆

 よく考えてあったとしても、普通に設計された電子機器が数10年を経て正常に働くとは考えにくいでしょう。 せいぜい10〜15年くらいが設計寿命だった筈です。 40年も前の機器を使ってみようなどと思う方が酔狂なんです。(笑)

 しかし、電子部品すべてが劣化する訳ではありません。 経年劣化し易い部品さえ交換してやれば意外に機能・性能を取り戻せます。 ただ、それが現代に通用するか否か・・と言う部分が大いに問題でしょうね。既に時代は終わってますから。 結局、直してみるのは面白いけれど実用性はありませんでしたと言うオチになりそうです。古い機械の修理なんて所詮そんなものです。

 このオシロはSSBのオンエア・モニタくらいならそこそこ実用になります。 あるいは、近ごろ流行のAM局の変調度モニタにも最適です。 深い変調でありながら、過変調にならぬよう直接見ながら管理できます。 SSBやAMなんて40年前から変わっていませんから役立つのも当然かも知れませんね。 ジャンク(危険ゴミ)になるハズだったんですから、ずっと使ってCRTが焼けて来たところで惜しくもないでしょう。もう一度使ってやりましょう。 de JA9TTT/1

(おわり)fm