EX

2018年9月10日月曜日

【回路】7MHz PLL Oscillator (3)

7MHz帯のPLL発振器・その3 VCOの研究編
MC1648Pを使う
 7MHz PLL発振器を題材したPLL活用の第3回です。前回(←リンク)はPLL回路の各要素を概観しました。 今回はたいへん重要なVCOを集中的に扱います。 ループフィルタの設計が適切なら、あとはVCOの「良さ」が出力スペクトラムの「きれいさ」のほとんどを決めていると思っています。

 写真のMC1648Pは非常に古いICです。 1970年代のはじめには登場していました。 しかしPLL回路のVCO用として優れていたため、以後多くの推奨回路に使用例がみられます。 デバイス技術の進歩で改良版も登場していますが中身に大きな違いはないようです。 それだけ優れた設計だったということでしょう。 ここではMC1648Pをあらためて見直し、代替となる回路を探りたいと思います。

                   ☆

PLL回路のVCOに求められるものは
 PLL回路のVCO(電圧制御発振器)としては、電圧または電流と言った電気的な手段で周波数が変えられるような発振器なら何でも良いはずです。 ですからごく常識的なコルピッツ型やハートレー型の発振器でも良いでしょう。 実際、過去に作ってきたPLLではそうした発振回路を採用してきました。 中でもよく使われる回路として変形クラップ型があって今回もテストしています。 しかし、PLL用にはそうしたポピュラーな発振回路よりもMC1648Pの方がずっと使い易いのです。 流石に長く使われているだけの意味はあるようです。

 きれいな発振出力を得るためには共振回路を持ったVCOに限ります。 HF〜VHF帯ならLC発振器が、UHF帯以上ではストリップラインや誘電体共振器を使います。 場合によっては水晶発振子を使うこともあります。 いずれにしても周波数の可変には可変容量ダイオード(以下バリキャップと表記)を使います。 しかしバリキャップを発振振幅の大きな部分に接続するとダイオードとしての整流作用が働き、自己バイアスがかかるなど問題が発生します。 自己バイアスによって所定の周波数可変範囲が得られない、ループフィルタに電流が流れ込んでPLLの動作に干渉するなどの不都合が起こります。 これをうまくこなす方法もありますが、使いやすさの点ではタンク回路の発振振幅を約1Vppに抑えたMC1648Pに分があるように思いました。

 写真は新旧のMC1648Pで右が新しいものです。右は最近になって購入したものですが安価とは言えず確実な入手も難しいようでした。 MC1648Pのメリットは認めますが、そのものを継続して使うのはあまり得策とは思えません。できたら代替となる回路を検討すべきでしょう。 まずはMC1648Pの動作を見直した上で代替回路を考えたいと思います。

 以下、PLLで発振器を作ろうとすれば役立つかもしれませんが、VCOとして使うのではなくてバリコンで周波数可変するような一般的な自励発振器としてはほかの回路形式の方が優れています。 PLL回路にさして興味がなければこの先はお薦めしません。時間を無駄にしませんように!
                   ☆

MC1648PのVCO
 既出ですがMC1648Pを使ったVCO回路です。 発振専用のICなので内部で発振回路が構成されています。 あとはコイル:Lとコンデンサ:Cを使った共振回路を外付けするだけで確実に発振してくれます。 あまりQの低いコイルはC/Nが悪化するので感心しませんがそれほど難しく考えなくても発振はしてくれます。 特別High-Qにする必要もないです。

 発振周波数の可変はLあるいはCのいずれを変えても可能ですが、電子式に可変したいならCを変えるのが現実的です。 可飽和特性を持ったフェライトコアを使ってコイルを作り、励磁巻線にバイアス電流を流してインダクタンスを可変すると言った方法がない訳ではありません。しかしメリットは少ないでしょう。 バリキャップでキャパシタンスを変える方法が現実的です。  ここではバリキャップとしてFC-52M(富士通)を使いました。 逆バイアス電圧を0〜5V変化させると端子間容量は約140pF〜20pF変化します。

 バリキャップに加わる高周波電圧は1.2Vpp程度です。 逆バイアス電圧が0Vでは僅かに自己整流がありますが、0.5Vも加わればもう起こりません。 従ってバリキャップの容量変化特性から求まる周波数の可変範囲が実現できます。

MC1648Pの内部回路を考える
 MC1648Pの内部回路も含めて発振回路をもう一度見直しましょう。

 左図はMC1648Pの等価回路がわかるように書いた図面です。 内部はたったこれだけの回路でしかありません。 しかも左側の半分近くはバイアス回路が占めており、さらに右側に出力のバッファアンプがあります。 実際の発振回路は中央部分にあるわずか2石で構成されているのです。

 温度特性を良くするとか、発振振幅を一定に保つと言った回路の工夫は見られますが、発振器の本質はたった2石の帰還型発振回路なのです。これなら簡単に代替回路が作れそうに思いませんか?(笑)

MC1648PのVCO:出力波形
 MC1648Pは正弦波で発振していますが、出力波形は矩形波と正弦波が選べます。 Pin4のAGC端子とGND間の抵抗器を省き、コンデンサでバイパスするだけの状態で使うと写真のような矩形波っぽい波形になります。

 Pin4とGND間に10kΩくらいの可変抵抗器を挿入して最適なポイントに調整すると正弦波に近い波形にすることもできます。 ただし発振振幅はやや小さくなります。

 だいたい4.3kΩにすると大きめな発振振幅で正弦波にちかい波形になりました。 ICにはバラツキがあって、最適値は変化しますので波形を見ながら個々に調整すべきでした。
なお、発振そのものは正弦波状なので内部のアンプを通さずTank回路から直接取り出すと正弦波になります。

可変容量ダイオード
 電子的に共振周波数を可変したり微調整する目的で様々な可変容量ダイオードが作られています。 現在では表面実装型が主流になっているようです。

 参考のため手持ちのバリキャップを幾つかを並べてみましたが、見たところは小さな2端子もしくは3端子の電子部品です。普通のダイオードとあまり違いません。 3端子のものは2個が複合されたもので、カソード・コモンのものが多いようです。 これは2つ使って発振電圧による自己整流作用を軽減し周波数の可変特性を改善する方法があるからです。 3端子のものは最初からそのような目的に作られたものです。 ただし直列にすると容量は半減します。 もちろん片側だけ使ったり、2つを並列に使うと言った応用もできます。

 バリキャップには大きく分けて3種類があるようです。 最大容量が20pFくらいの比較的小容量のものはかつてのアナログTVやFMチューナの自動周波数調整(AFC)用でしょう。 最大容量が20〜40pFのものは電子同調式FMチューナあるいはCATVチューナ用です。 CATV用は逆耐電圧が高くなっていて30V程度まで加えて使うものがほとんどのようです。 もう一つにAMラジオの電子同調用があります。 AM放送は周波数が低いため大きな同調容量が必要です。したがって最大容量は400pFくらいあります。 AMラジオだけでなく低い周波数での応用にも重宝します。

 LC共振回路を使った電子機器は減少傾向にあるため、バリキャップにも廃止品が多くなってきました。 完全になくなることはないと思いますが、これからは表面実装型も含めて検討する必要があります。

 なお、電源整流用のダイオードやツェナーダイオードなどをバリキャップの代用に使うことがあります。LEDを使っている例も見たこともあります。 いずれも端子間のキャパシタンスは小さめで、逆電圧であまり大きく変化しません。 そのため周波数の可変範囲は狭いのですが目的次第で活用できることがあります。

FC-52Mと1SV228の実測特性
 左図の赤い線はここで使用しているFC-52Mの実測特性です。 5V以下の電圧でも使いやすい特性です。 バリキャップのためだけに高い電圧を用意する必要がないのは有難いです。
 また、左図の青い線は1SV228の特性です。 1SV228は一つのパッケージにダイオードが2つ入っていますが、片側の特性です。 もし直列に使うならグラフに示した値の半分になります。 この1SV228はFC-52Mの代替候補で現在でも入手できるものです。*1 FC-52Mよりも容量可変範囲は狭いのですが、このPLL発振器に使うには十分な容量変化特性です。 支障なく使えるでしょう。 こうした可変容量ダイオードの特性はLCRメータと可変電圧電源があれば容易に測定できます。

 いずれのダイオードも、より広い容量可変範囲を得るには10Vくらいまで加える必要がありそうです。 しかし発振周波数がHF帯なら5V以下でも十分でしょう。

 このFCシリーズでは最大容量の大きなFC-51M(150pF@Vr=1V)がHF帯でも低い周波数で、FC-53M(45pF@Vr=1V)と54M(25pF@Vr=1V)はHF帯の高い方に向いています。 中波帯や短波帯の低い方にはSVC321(430pF@Vr=1.2V)や1SV134(480pF@Vr=1V)が良いでしょう。 VHF帯には1SV103(CATV用40pF@Vr=3V)や1SV113(34pF@Vr=1V)が向いています。 もちろん、広い可変範囲が必要なければ周波数帯に関係なく容量の小さなバリキャップもVCOに十分使えます。

 残念ながらここで使ったFC-52M(80pF@Vr=1V)はずいぶん前に廃止になっています。 直接代替可能なバリキャップは存在しません。 類似品で代替できますがVCOの特性はあらためて採りなおすことになります。 もちろん1SV228で代替する場合もVCOの特性は再測定になります。 しかし可変電圧電源(9Vの乾電池と10kΩのVRでも良い)とマルチメータ、それに周波数カウンタがあれば再測定は容易です。 無理して同じバリキャップを探すよりも簡単ですから積極的に代替すべきでしょう。

*1:1SV228は面実装型で秋月電子通商にて5個150円で購入。変換基板に実装して測定しました。価格は2018年9月現在のものです。

トランジスタで作るVCO
 MC1648Pの内部を検討して発振回路のコアの部分はたった2石で構成されていることがわかりました。 ただし動作環境の変化などを考えるともう少し検討しておいた方が良いでしょう。

 いくつか検討したところ、トランジスタ4つとダイオード1つの回路が良好でした。調整も容易です。 4つのうち発振に直接寄与するトランジスタは2つです。その2つは特に周波数特性の良いものを選びます。 ここではローコストながら周波数特性の良い高周波用の中華トランジスタ:S9018Hを使ってみました。 さらにバイアス回路へも品種統一の意味で同じS9018Hを2つ使いました。
 バイアス回路の部分は2SC1815のような汎用品でも大丈夫だと思います。しかしS9018Hは安価ですから経済性は悪くありません。 S9018H の足の並びは2SC1815などとは違うので注意します。(下図参照) ダイオードはシリコンの小信号用なら何でも大丈夫です。 ここでは1S2076Aを使いましたが代替候補はいくらでもあります。

 MC1648Pは数10円では買えませんが、S9018Hを4つと汎用ダイオード1つならコストは50円以下です。 性能はむしろ良いくらいですからお薦めできます。 ディスクリートは嫌いでどうしてもIC化したいなら後ほど実例があります。そちらもどうぞ。(笑)

トランジスタで作るVCO:回路図
 このような回路になっています。 Q1とQ2が発振用トランジスタです。 Q3とQ4はQ1とQ2の動作電流を決めるカレントミラー回路です。 またD2はバイアス電圧を得るためのものです。

 使用する周波数帯により動作電流を変えると最適化できます。 だいたい30MHzまでのHF帯なら図のままの回路定数で大丈夫です。 VHF帯以上でも使える回路ですが、その場合はR3を8.2kΩよりもう少し小さくしてQ1とQ2の電流を増やしてやります。 増やしすぎると発振振幅が増大し、バリキャップに加わる発振電圧が過大になります。 念のためQ1のコレクタをオロスコープで観測し1.0〜1.5Vppの発振振幅になるよう加減します。オシロがなければ回路図のままでも十分です。

 この発振回路はS9018HのようにfTの高いトランジスタを使ってコンパクトに製作すれば100MHz以上でも楽々発振できます。 しかもバリキャップの容量を変え、発振周波数が変わっても発振振幅はあまり変化しないのでPLL回路には使い易い発振器(VCO)です。

 発振部のトランジスタはS9018Hに限りません。 低い周波数なら2SC1815でも問題なく発振できます。 もちろん高周波特性が良いトランジスタの方が有利です。 手持ちの中では2SC535、2SC668、2SC1923や2SC2668などが適当でした。

Tr-VCOを7MHzのPLLに使う
 さっそくPLL回路に組み込んでテストしました。 周波数帯は同じく7MHzです。 PLL用のICにはMC145163Pを使いました。 もちろんTC9122Pと74HC4046を組みわせた回路構成でも大丈夫です。

 MC1648PのVCOとほとんど同じですが、S9018Hを使った回路の方が回路自身のノイズは小さめです。 そのためスペクトラムを観測すると10dB近くノイズフロアが低下します。 発振信号近傍の状態はそれほど違いませんが広帯域なノイズが少ないのは評価できると思いました。 これはMC1648Pのように内部の出力アンプを通していないからでしょう。 1段でもアンプを通る回数が増えればどうしてもノイズフロアは上昇します。 MC1648Pは汎用性を持たせる意味でカスコード形式のアンプ+差動増幅のアンプという2段構成なので不利なのでしょう。 それなりのメリットのある回路構成ですがノイズの点では少し不利なようです。

 このようなことから、MC1648Pの入手を試みるまでもなくトランジスタ4石で作ったVCOを第一にお薦めしたいと思います。 国産品のRF用トランジスタでもOKですが中華トランジスタで作ればコスパも抜群です。

Tr-VCOを使った7MHz PLL:回路図
7MHz帯のPLLに採用した例です。 トランジスタを使ったVCOも使い方はMC1648Pと同じです。

 トランジスタ式はAGC回路がないので、温度変化や電源電圧の変動に幾らか弱い傾向があると思います。 しかし、カレントミラー形式にしたので抵抗分圧でバイアス電圧を得る方式よりもずっと安定です。 図では電源経路からのノイズやリプルを軽減する目的でローカル・レギュレータを設けています。 発振出力をきれいにする効果もありそうですが、実験に使っていた安定化電源のDCもきれいだったので極端な違いは見られませんでした。

 この回路例ではMC145163Pで10.240MHzを発振させたので、10kHzステップでしか信号は得られません。 10kHzの間を連続的にカバーしたいなら、このBlog特集の初回(←リンク)にあった様なVXO形式の基準発振器にします。 またMC145163Pの代わりにTC9122P+74HC4046+74HC4060を使った第2回(←リンク)のような回路構成も可能です。 手持ちを有効活用されることを希望します。

 ループフィルタのあとのバッファアンプ(OP-Amp)はLMC6482AINを採用して近代化しました。 すこしローノイズになったように感じます。 ICL7621DCでも大差はなかったので類似のC-MOS OP-Ampならなんでも間に合うかもしれません。 入出力ともレール・トゥ・レール型のOP-Ampを使ってください。

# 詳しい回路説明や、そのほかのパーツについてはPart 1およびPart 2のPLL回路などを参考にして下さい。

Tr-VCOを使った7MHz PLL:特性グラフ
 VCO特性の話しです。 制御電圧対周波数の関係がVCOの特性になります。一旦PLLのループを切り離してVCO部を単独で測定します。 このグラフは上記の7MHz PLLのトランジスタを使ったVCOの測定結果です。 ただしMC1648Pおよび同タイプのVCOでは良く似た特性になります。
 左図は回路図中にあるコンデンサ、C21を変えながら採取した特性です。 C21はコイルに並列になりますので、容量を増やすと周波数が下がるとともに、制御電圧による発振周波数の変化量も抑制されます。 以下Cpとあるのは、回路図のC21のことです。

 バリキャップにはFC-52Mを使っています。 すでに見たバリキャップの電圧と端子容量の特性がそのまま現れたような特性になりますが、実際にはストレー容量やデバイスの端子間容量が存在するため計算から精度よく発振周波数を求めるのは困難です。
 したがって、VCOを試作してから実測するのが現実的でしょう。 量産するような場合はバラツキも考慮する必要があります。 VCOの発振周波数範囲は必ずPLL発振器で発振させたい範囲をカバーしている必要があります。さらにある程度の余裕も必要です。 また、必要以上に周波数の可変範囲が広いVCOはきれいな信号を得にくい傾向があります。
 複数の周波数帯で使いたいなら、一つのVFOで広い周波数範囲をカバーさせるよりも周波数帯ごとに幾つかVCOを切り替える(コイルを切り替えても良い)方法がベターでしょう。

 VCOの特性は:Kvで表されます。 計算式は:KV=2π(fmax-fmin)/ΔVcです。 単位は(radian/volt)です。 ΔVcと言うのはfmaxになるときの制御電圧:VcとfminになるときのVcとの差電圧です。 このグラフではVc=0V〜10Vまで可変していますが、その範囲の全部が使えるわけではありません。 Vc=0V付近はバリキャップの自己整流による影響が現れやすくなります。 また5Vを超えた部分は周波数変化が少なくなっています。 この様な部分はなるべく使わない様にすべきです。 ここではVc=0.5V〜4.5Vの範囲と考えるのが適当でしょう。ΔVc=4Vになります。 並列のコンデンサ:Cp=47pFとすれば、Vc=0.5Vのとき、fmin=6.847MHzです。 またVc=4.5Vのときはfmax=8.972MHzでした。

したがって、Cp=47pFのとき:
Kv=2π(8.972-6.847)×10^6/(4.5−0.5)=2π(2.125×10^6)/4
 ≒3.338×10^6 ・・・・・(radian/volt)となります。(Cp=C21=47pFのとき)

Cp=33pFのときは:
Kv=2π(9.631-7.131)×10^6/(4.5-0.5)=2π(2.500)×10^6 /4
 ≒3.927×10^6・・・・・(radian/volt)となります。(Cp=C21=33pFのとき)

また、Cp=22pFのときは:
Kv=2π(10.383-7.386)×10^6/(4.5−0.5)=2π(2.997×10^6)/4
 ≒4.708×10^6 ・・・・・(radian/volt)となります。(Cp=C21=22pFのとき)

さらにCpを入れないときは:
Kv=2π(12.328-7.987)×10^6/(4.5−0.5)=2π(4.341×10^6)/4
 ≒6.819×10^6 ・・・・・(radian/volt)となります。(Cp=C21=なしのとき)

ここでは7〜8MHz帯のPLL発振器を作るのが目的です。 従ってCp=47pFが適当です。 全体的にもうすこし周波数を下げたい感じもするので、コイルのインダクタンスを増やすと良さそうです。その場合は特性の再測定が必要です。

 なお、VCOの回路図にはコイル:L1のインダクタンス値が書いてあります。 その値とCpの値、さらにFC-52Mの容量特性から共振周波数が計算できます。 しかし計算値と実測値は一致しません。これはブレッドボードのストレー容量やトランジスタの電極間容量が存在するからです。 周波数の実測に基づき逆の計算から求めるとストレー容量は20pF近くあることがわかります。 これはブレッドボードの分布容量の実測からも十分納得できるストレー容量でした。 プリント基板化するとストレー容量は減少するので注意が必要です。

VCOの定数:Kvは計算からもある程度求めることができますが、現実にはストレー容量などの影響もあるので実測で求めるべきです。 そうすればPLLとしての設計精度は向上します。 場合によっては並列容量:Cpをトリマコンデンサにしてストレー容量の変化を吸収するような設計も必要かも知れません。 しかし手作りの一品料理でしたら実測から求めておくのが現実的でしょう。

 もちろん、まったく新規にVCOを設計するなら、まずは必要な発振周波数の範囲を決めます。 必要なバリキャップの容量可変比は上端周波数と下端周波数の周波数比の2乗ですので、十分な容量変化量が得られるバリキャップを選択します。 例えば5〜6MHzの発振範囲とすれば、周波数比は1.2倍ですから、バリキャップの容量変化比はその2乗の1.44倍以上必要です。 具体例として、例えば0.5V〜4.5Vの変化で、容量が1.44倍以上変化するようなバリキャップを選びます。 その後、バリキャップの容量特性および発振周波数比と下端周波数などからTank回路のインダクタンスや並列容量を計算します。 もちろん、インダクタンス値や並列容量Cpなどは目的の発振周波数において合理的な値の必要があります。 さらに得られた回路定数でVCOを試作し、特性を測定してKvを求めれば完全です。
(追記:2018.09.11)

                   ☆

 MC1648Pの考察と、それを模したトランジスタ式のVCOについて調べました。 あらかたの用途では代替のトランジスタ式VCOで満足できます。 従って、以下はまったくの蛇足なのですがVCOのIC化を試みた記録として紹介しておきます。

μA703を使ったVCO
 実験を始めた当初、MC1648Pは入手難だったので代替を試みたのがこの回路でした。 μA703はフェアチャイルド社のFM-IFアンプ用のICです。 内部構造は非常にシンプルで、上記のトランジスタで作ったVCOをそのままIC化したような構造です。

 実はそれは話が逆で最初はこちらから実験を始めたのです。 その結果がなかなか良かったのでトランジスタ化の方向へ進んだのです。 昔のようにμA703が容易に入手できるならこの回路も良いのですが、すでに過去のデバイスになっていて入手は難しいでしょう。 無理に手に入れようとすれば金銭的な解決になってしまいます。 上記トランジスタ式VCOとはコスパの点でも勝負にならないでしょう。(笑)

μA703を使ったVCO:回路図
 簡単な回路とは言えさすがにICです。 回路はすっきりします。 μA703はFMチューナの世界では定番だったのでしょう。 たくさんのメーカーからセカンドソースが登場しました。

 たとえば東芝のTA7060Pはパッケージ違いの同等品です。 回路図中にあるように接続して使えばそのまま代替できます。 さらにTA7060Pのセカンドソースとしてローム社のBA401がありこちらも同じように使えます。 NECのμPC555AはμA703の互換品でした。 しかしどのICも遠い昔に廃番なので入手は困難です。 稀にオークションに登場するらしいですが入手難から高騰するためとうていお薦めできません。 もしも手持ちがあったなら試してみる程度が適当です。

 MC1648Pを模した回路になっていますが周波数特性はやや劣るようです。 200MHz以上の発振はできないようでした。100MHz以下で使うのが適当でしょう。 できたら50MHz以下が間違いないようです。

TA7069Pを使ったVCO
 TA7069PはRCAのCA3028AもしくはCA3053Aと類似の等価回路になっています。 差動増幅器とバイアス回路からなっており、TA7060Pとも類似ですがFM-IFアンプ専用ではなくてもう少し汎用性があります。

 このTA7069PでもMC1648Pを模した発振回路を構成することができます。 当然ながら上記に書いたCA3028A,etcでも同じことができます。 さらにCA3028AのセカンドソースであるTA7045Mも使えます。

 しかしどのICも古典的すぎるでしょう。 もしたくさん手持ちがあって使うあてもなく持て余しているのでしたら活用の機会かもしれません。 ただし新たに購入してまで使うようなパーツではありません。 周波数特性は上記のμA703を使う例と類似ですので50〜100MHz辺りまでが適当です。
 
【TA7069Pを使ったVCO:回路図
 TA7069Pはこのように使いました。 バイアス回路の一部が内蔵されていないため、外付けで補います。 そのようにすればTA7060Pと同じように使えます。

 何か特別なメリットでもあれば良いのですがこれと言って無さそうでした。 TA7069Pはたまたま昔使った残りがあったので試すことができましたが、これから手に入れても仕方ないでしょう。 TA7060PやμA703よりも使用量の少ないICだったようです。 こちらも手持ちがあれば試す程度が宜しいと思います。

でき上がったVCOの性能はまずまず良好でした。 十分使い物になると思います。

LA1600を使ったVCO
 LA1600はラジオ用のICです。それをVCOに使ったら可哀想かもしれません。 LA1600はスーパー・ヘテロダイン形式のラジオです。 そのため局部発振回路(Local OSC)が内蔵されています。 それをVCOとして使うのです。

 ちょっと可哀想かもしれませんが経済性は悪くありません。 今のところ100円前後で購入できます。 MC1648Pに手を出すよりも安価でしょう。 必要な外付け部品も少ないので使いやすいICでした。 ただ、遊びピンだらけでせっかくの高機能ICがちょっぴり忍びない感じもしました。(笑)

LA1600を使ったVCO:回路図
 LA1600を使ったVCOは経済性だけではないメリットもあります。 内部の等価回路は公開されていないので詳しくわかりませんが、MC1648Pと類似の発振回路になっているように思います。 さらに発振振幅が一定に保たれるような工夫もされているようです。 このため、性能の面から見てもVCOとして悪くないと感じました。

 LA1600はたくさんの回路が内蔵されています。VCOとして使う際は未使用の回路が中途半端に動作しないよう気をつける必要があります。うっかりするとノイズ源になります。 回路図のように使えば大丈夫なようでした。 発振部とも関連があるためRFアンプ部分はノイズ源にならぬよう特に注意が必要です。 IFアンプ以降は単純にピンを遊ばせておけば動作しなくなるようです。

 LA1600はもともと短波帯のラジオが作れます。従って30MHz以下なら動作は確実でしょう。 それ以上の周波数はデバイスのばらつきにより違いがあるようです。 特に高い周波数では確実に発振できるか実験的に確認する必要がありそうでした。

 AMラジオや短波ラジオは同じICで1〜2台も作れば飽きてきます。 LA1600はラジオ作りには便利ですし安価ですから買い溜めているかも知れません。 調べたらまだ10個くらい持っていました。この先LA1600で幾つもラジオを作ることはないでしょう。 VCOへの転用も考えたいと思いました。その方が死蔵するよりずいぶんマシです。

蛇足とは思いますが、LA1600の機能をすべて活かし、局発回路をPLL化したような受信機も作れます。 たとえば、IF周波数=450kHzとして9kHzステップのPLLで局発を構成すれば、シンセサイザ化した中波ラジオが作れます。

                   ☆

 VCO回路に絞って実験してみました。 PLL回路のVCOとしては従来から使われてきた発振回路で十分かも知れません。 ここでテストするまではそう思ってきました。 しかし話の種と思ってMC1648Pを試したところ、そのメリットがわかってきました。 調べたてみたら一つしか持っていなかったので、もう何個か欲しいと思いました。 さっそく購入を試みところ、手には入ったのですが入手性はかなり悪そうでした。 次はもう買えないかも知れません。 これをお薦めするのは躊躇われます。 あるいは面実装型の新型を買う方が良さそうでした。

 そこで代替回路を検討したところ、トランジスタを使った回路が好結果でした。 周波数特性はMC1648Pよりも良いくらいです。 ノイズが少ないのもメリットでしょう。 面実装型でfTの高いトランジスタを使い、極力コンパクトに作ってやれば更に高い周波数のVCOとして期待できます。 うまい代替回路ができて良かったと思っています。

 作った回路はMC1648Pと同じ欠点を持っています。発振振幅を抑えた結果、幾らかノイジーになっているでしょう。しかし実際の評価に於いてはディスクリート回路の有利さからでしょう、MC1648Pよりだいぶローノイズでした。  より高性能なVCOを必要とするケースもあると思いますが、ほとんどの用途で満足できると思います。 必要以上に可変範囲を欲張らないように設計し、なるべくQの高いバリキャップを使うのがベストです。

 VCOの検討が済んだのでPLLの設計に必要な情報は揃いました。 ここまででだいぶ時間が経過しましたが、次回はループフィルタの設計に進みましょう。 合わせて定数選びのコツと言ったところにも触れられたらと思っています。 ではまた。 de JA9TTT/1

(つづく)←リンク(準備中)nm

2018年8月26日日曜日

【回路】7MHz PLL Oscillator (2)

7MHz帯のPLL発振器・その2
 【7MHzのPLL発振器(2)
  PLLの活用を目指したBlogの第2回です。 前回(←リンク)は7MHzのPLL発振器を題材に評価しました。 できたものがどんな性能か見えてきました。 第2回ではPLL発振器の概要をおさらいしたあと、PLLの回路要素を順に辿って行きます。

 写真は7MHzのPLL式発振器です。 今回はMC145163Pを使わず、汎用のHC-MOSとポピュラーなプログラマブル・カウンタ:TC9122P(東芝)を使いました。
 MC145163Pは持っていないけれど、TC9122Pならあるんだけれど・・・と言うのでしたら同じように7MHzのPLL発振器が作れます。 TC9122Pの代わりにTC9198P/Fでも大丈夫です。 少し部品数は増えますが使うICがスリムなのでコンパクトに作れます。 PLLとしての性能もさした違いはありませんでした。

 【7MHzのPLL発振器(2):TC9122P/74HC4046
 第2回のおもな目的は、この回路を作ることではないのですが典型的なPLL回路として載せています。 説明用の例題とも言えます。 だからと言って単なる見本ではなく使い物になります。 上記写真を具体的な回路図にまとめておきました。 MC145163Pがなくても作れる回路例と言うわけです。

 興味を持っていただけたようでしたらPLL回路を作りながら進んでいただければVY-FBだと思います。 前回の製作ではMC145163Pの機能をフルに使ったのでスッキリしていました。 使わないと部品は増えますがなるべくシンプルになるよう選んだので複雑にはなっていません。同じように簡単に作れます。

 10.240MHzのVXO出力から比較基準の10kHzを作る部分には、分周器としてHC-MOSのTC74HC4060APを使いました。 他のHC-MOSカウンタを並べて作ることもできますが、74HC4060なら一つで1/1024の分周ができて便利です。 74HC4060は水晶発振回路も内蔵していますが使わずに外部から与えることになります。 その発振回路の部分はインターフェース回路として利用します。 10.240MHzのVXO回路は前回とまったく同じです。 なお、扱う周波数が10.24MHzと高いためスタンダードC-MOSのCD4060Bは使えません。高速C-MOSの74HCタイプを使います。

 プログラマブル・カウンタにはだいぶ古臭いのですがTC9122Pを使いました。既にディスコンですが持っている人は意外に多いのではないでしょうか? 新規に買おうとすればだいぶ値上がりしていますがまだ何とか手に入ります。 持っているなら貴重品扱いなどせず積極的に使うべきでしょう。そのうち陳腐化して価値も無くなりますので。 ここはTC9198P/Fでも大丈夫ですがこちらもディスコンでしょうね。 ほかに74HCシリーズのカウンタ用ICで構成することもできるのですがICの数がずいぶん増えます。例えば74HC192などを並べて作れます。 しかし、なるべくPLL用に作られているTC9122やTC9198を使うのが良いです。

 ここで使用したTC9122PはMC145163Pに内蔵されているプログラマブル・カウンタほど周波数特性は伸びていません。 電源電圧5Vでは21MHz帯までが良いところです。 電源電圧を7Vまでアップして30MHzあたりまででしょう。 電源電圧をアップしても50MHz帯は無理ですからVHF帯が必要なら周波数変換する形式にします。  TC9198P/Fもほぼ同様です。  ここでは触れませんがTC9198と可変分周プリスケーラで高速カウンタを実現する方法もあります。(注:TC9122Pには3種類くらい世代の異った物があります。古い世代は周波数特性が伸びません。10MHz以下で使うのがせいぜいです)

 位相比較器はCD74HC4046AEに内蔵のもの(タイプⅡ)を使いました。 TC9122Pといえば同じ東芝のTC5081APが相棒の位相比較器かも知れません。 しかし入手は難しいでしょう。それに74HC4046の位相比較器の方が高性能ですからTC5081APを探すまでもないです。 74HC4046なら入手は容易です。 なお、74HC4046は電圧制御発振器:VCMを内蔵していますがここでは使いません。必ず遊び入力ピンの処理をしておきます。(回路図のようにしておけばOKです)

 ループ・フィルタとバッファ・アンプ、及び補助のフィルタは前回の回路と同じ考え方です。回路定数は低インピーダンス型になっています。上記の写真は普通に設計したループフィルタになっていますが、この回路図のように低インピーダンス型の方が良好でした。 OP-Amp.にはナショセミのLMC6482AINを使いました。 インターシルのICL7621DCPAも使えますがいくらかノイジーなようです。 やはり設計の新しいLMC6482AINの方が優れています。

 VCOは前回同様にモトローラのMC1648Pを使っています。これは比較の意味で前回と同じにしただけです。ほかの形式でも良いでしょう。 なお、VCO部分については次回のBlogで詳しく扱いたいと思っています。

 スペクトラムの写真は示しませんが、完成した7MHz PLL発振器の性能はMC145163Pを使ったものと同等です。 位相比較器の方式やVCOの部分が同じなのでほとんど違いはないと言えます。

                   ☆

 【PLL回路のブロック図
  図は典型的なPLL発振器のブロック図です。 上記の7MHz PLL発振器もこれにならっています。

 回路の構成要素は、(1)位相比較器、(2)ループ・フィルタ、(3)電圧制御発振器、(4)プログラマブル・カウンタ(主分周器及びプリスケーラ)、(5)基準発振器及び分周器・・ から成っています。 他の形式のPLL発振器も基本はこれと同じであり、付属回路の有無くらいのものです。

 PLLの設計はパート・1でも書いたように、ひとことで言うとループフィルタの部品定数を決めることに集約されます。 要求された仕様からPLL発振器としての仕様を決めます。 具体的には周波数ステップや周波数切り替えの応答速度などです。 さらに回路の構成要素ごとに、必要な特性が得られるよう細部設計を行ないます。 また、項目によっては事前に試作を行なって実測から特性を求めておく作業も必要でしょう。
  このように要求仕様から決定した項目と、各構成要素の特性から具体的にループフィルタの部品定数を計算します。
 そのようにして作ったPLL回路は確実にロックします。 ただし確実にロックしただけでは不十分なこともあります。そんな時はさらに信号の品質が満足できるよう細部をチューニングして完成させます。

 ループフィルタの設計は文章にすると難しそうに感じますが、実際の作業は意外に単純です。 よほど特殊なPLLでもない限り定型の公式に数値を当てはめれば容易に算出できます。 ただし見慣れぬ単位を持つ数値も多いためいきなり計算式が出てきたら難解でしょう。 まずは構成要素を辿りながら準備運動から始めたいと思います。 構成要素はほとんどがIC化されていますから主にICの説明になります。

 【位相比較器のIC
 PLL発振器は位相同期ループ発振器と言うくらいですから、位相比較器がシステムの「かなめ」になると言えるでしょう。 写真は市販されている位相比較器の例です。

 位相比較器は汎用ロジックICを組み合わせて構成することも可能ですが、いまでは専用のICを使うと便利でしょう。 右下のMC4044Pは初期のIC化された位相比較器です。 内部はTTL構造で、比較的高速で動作するため今でも稀に特殊な用途で使われることがあります。 しかし、使いにくいのであえて選択する意味はないと思います。すでに廃れているとも言えるでしょう。

 位相比較器の重要な特性は、位相比較器ゲインでKpの記号で表されます。 2つの信号の位相差がどれくらいの電圧として取り出されるのかというのが位相比較器ゲイン:Kpになります。 従ってKpの単位は出力電圧/位相差となります。 もちろんこのタイプの位相比較器の出力はパルス波形ですので、ループフィルタを通って平滑化された後の電圧と位相差の関係になります。

 MC4044PのKpは:Kp=(2・Vbe)/4π≒1.4/12.57≒0.111(Volt/radian)です。

なおVbeというにはシリコン・トランジスタのベースエミッタ間順方向電圧です。約0.7Vと言うことになります。 いまどきMC4044Pを使うケースはまず無いためこの数字は忘れても構いません。 しかし万一使う必要が生じた時のために書いておきました。 なぜこのような数字になるのかはMC4044Pのデータシートに詳しく書いてあります。

 ほかのIC、CD4046BE、CD74HC4046AE、TC5081AP、 SC371004の位相比較器は基本的に同じ特性ですがMC4044Pとはかなり違います。 次項で詳しく見てみましょう。

参考:CD4046BEには2種類、CD74HC4046AEには3種類の位相比較器が内蔵されています。詳しくはそれぞれのデータシートを見てください。 このBlogで扱っているPLL発振器(周波数シンセサイザ)の用途ではそのうちタイプⅡという位相比較器を使うことがほとんどです。 ここではその前提で話を進めます。 なお、タイプの異なる位相比較器ではKpの値も異なります。

 【タイプⅡ型・位相比較器の動作について
 出力周波数の範囲が広いPLL発振器には左図のような位相比較器が使われています。 周波数範囲が「狭い」あるいは「広い」の定義は漠然としていますが、例えば可変周波型水晶発振器:VCXOにロックを掛けるようなPLL発振器は狭い方の例です。せいぜい数kHz以内の範囲でロックさせようと言うものです。

 ここで製作している発振器は7〜8MHzと約1MHzの範囲を10kHzおきに広範囲に発振させようとするものです。 広い方の例といえるでしょう。 左図のタイプの位相比較器は、図右下にあるように2つの入力端子間の位相差に従った出力電圧が得られるだけでなく、周波数の高低も比較することができます。 そのため、広範な周波数可変範囲を持った電圧制御発振器:VCOと組み合わせても必ずロックできるPLLが作くれます。

 CD4046Bには他にイクスクルーシブ・ORゲートを使った位相比較器(Type Ⅰ)があり、さらに74HC4046AにはR-Sフリップ・フロップを使った位相比較器(Type Ⅲ)も内蔵されています。しかしこれらはどちらかと言えば特殊な用途で効果を発揮するものです。 ここではType Ⅱを使う前提で話を進めたいと思っています。 三つの中でType Ⅱがいちばん汎用性があります。(欠点もあるのですが・・・)

  4046Bや74HC4046のType Ⅱ型位相比較器の位相比較器ゲイン:Kpは
 Kp=(Vdd-Vss)/4π≒5/12.57≒0.398(Volt/radian)です。

 なおVddは位相比較器の電源ピンの電圧でVssはGNDピンの電圧です。 従って電源電圧が異なる時は再計算します。 例えばVdd=7Vとすれば:Kp≒0.557(Volt/radian)となります。
 電源電圧Vdd=5Vで使うケースがほとんどなので、位相比較器ゲイン:Kp≒0.4 (Volt/radian)は覚えておいて損のない数字かもしれません。 しかし意味さえわかっていれば簡単に計算はできますけれど。(笑)

上記のことは、C-MOS構造のPLL用ICであるMC145163Pなど多くのPLL用LSIに内蔵されている位相比較器に於いても同様です。 もちろんTC5081APでも同じです。 すなわち、Vdd=5Vで使えば:  Kp=0.398 (V/rad) です。

参考:PLL回路では弧度法で。
 PLL回路における角度の表記は基本的にラジアン(Radian)を使います。 ラジアンと言う単位は電気関係のお方にはお馴染みだと思います。 しかし生活では馴染みのない単位ですから一般にはピンとこないかも知れません。
 簡単に言うと円の360度が2πラジアンです。 πはお馴染みの円周率:3.1415926・・・ですから、1ラジアンは:1(radian)≒57.3度となります。  なぜこうした単位を使うのかと言う話しは冗長になるので省きますが、もし興味があれば「弧度法」(←リンク)を検索ワードに研究されてださい。

 【プログラマブル・カウンタのIC
 PLL発振器の出力周波数は、位相比較器の比較周波数とプログラマブル・カウンタ(可変分周比カウンタ)によって決定されます。 出力周波数をfo、比較周波数をfr、分周数をNとすれば: fo=fr×Nとなります。 Nは一般に正の整数ですが、フラクショナルN型という分数Nが可能なPLLの方式もあります。(フラクショナル=分数という意味)

 いま、比較周波数fr=10kHzとします。 N=700とすれば、出力周波数foは:fo=10×700=7,000(kHz)となります。 Nを700から順次大きくしてゆけば、発振周波数は10kHzずつ増加して行きます。

 プログラマブル・カウンタは汎用ロジックICのうち、プリセット可能なダウンカウンタがあれば構成できます。 マイコン以前の時代は10進数でプリセットできるカウンタがよく使われました。 写真のMC4016Pはその一つですが、高価なICだったので実際に使用例を見た覚えはありません。 一般には標準TTL-ICの74192がよく使われていました。 マイコンで設定する場合はバイナリ・カウンタの方が便利でしょう。 その場合は74191の方が良いのですが、いまどきTTLの時代でもないので高速C-MOSの74HC191あたりを使うことになるでしょうか。 アップカウンタの74HC161を使う方法もありますが、数値の設定が直感的でないためマイコンを併用しないとわかりにくいです。

 分周数が少ないうちは良いのですが、多くなると汎用ICでは必要なチップの数が増えてしまいます。 配線も面倒になることから、PLL発振器に向いた専用のプログラマブル・カウンタが作られました。 写真のTC9122PやTC9198FはそうしたICです。 これらのICも入手難になってきたことから、再び汎用のロジックICで構成する必要が出てきたのかも知れませんね。 プログラマブル・カウンタの設定や周波数の表示にマイコンの助けも借りればスマートにできると思います。今の時代ですからハードで何でも解決するのではなく、ソフトの助けも借りる方が製作はずっと容易です。

 【電圧制御発振器・VCO/VCMのIC
 写真は電圧制御発振器のICです。 電圧で何を制御するのかと言えば「発振周波数」です。

 電圧制御発振器の形式としては大きく分けて2つがあります。 LC共振回路の共振周波数を電圧によって変える方法と、CR回路の充放電を電圧で制御して発振周期・・・逆数を取ればは周波数ですが・・・を変える方法です。 前者を一般にVCO(Voltage Controlled Oscillator)と言い、後者もVCOの一種に違いはありませんが、発振方式の違いを区別する意味からVCM(Voltage Controlled Multivibrator)と呼ばれることが多いようです。

 MC1648Pは多くのVCO回路例で見かけますが、それ自体は単なる発振回路のICです。 発振周波数は外付けするコイル:Lとコンデンサ:Cの共振周波数で決まります。 そのうちコンデンサ:Cの方に可変容量ダイオード(通称:バリキャップ:Vari-Cap)を使うことで電圧により発振周波数をコントロールできる発振器になります。  蛇足とは思いますが、可変容量ダイオードとは端子間に加わる逆方向電圧によって端子間の静電容量(キャパシタンス)が変化するダイオードです。電気的に容量を変えられるバリコンのような半導体です。

 CD4046BEとCD74HC4046AEは位相比較器のところで既出ですが、これらのICには位相比較器のほかにVCMが内蔵さています。 内蔵VCMの周波数範囲はスタンダードC-MOSの4046Bは1MHzくらいまで、高速C-MOSの74HC4046では20MHzあたりまで発振させることができます。 しかし、その出力はお世辞にも綺麗なスペクトラムとは言えず、少なくとも無線通信のように信号の品質を要求される用途には使うことができません。

 過去に実験したことがあったので初めからVCMには期待していませんでした。 しかし74HC4046のVCMなら7MHz帯のPLL発振器が簡単に作れるので、工夫でカバーできないかと新たな期待を込めてやってみました。 もちろん周波数はうまくロックしてくれます。 しかし期待は見事に打ち砕かれてしまいました。 スペクトラムを見るまでもなく、受信機(CWモード)で聞いてみれば実用にならないことがすぐにわかります。ジッターが酷いためずいぶん濁ったトーンです。 スペアナの画面とにらめっこで種々設計を変えて試したところで解決には至りません。やはり通信系の信号源としては不適当という結論が妥当でしょう。 発振させたあとでたくさん分周するといった工夫でもすればそこそこ使えるようにはなります。しかしそれでは高いの周波数の発生はできません。 従って、ここでは4046B/HC4046系のICに内蔵れたVCMは使いません(使えません)。

 IC化されたVCMはまだ他にもあって、例えばモトローラのMC4024P(写真)や74シリーズTTL-ICの74124(74S124や74LS124もある)があります。 試してみると大同小異でいずれも無線通信関係に使うのは不適当でした。  高級な測定器の中にはVCMを信号源に使った例も見たことがあって、良い信号品質を得ているようなのでVCMが本質的にダメな訳ではないと思います。VCMなら磁気的な誘導を拾いやすいコイルを使わずに作れると言ったメリットもあります。 しかしLC回路のような共振器を使ったVCOより不利なことは否めないようでした。

 電圧制御発振器:VCOの特性は非常に重要です。 PLL発振器の出力信号の品質をほとんど決めるることになります。 どのような回路形式が最適なのか十分吟味したくなります。 ここでは一旦おしまいにしてあらためて扱うことにします。

 【複合機能のPLL用LSI
 機能説明の都合もあって、PLL発振器を構成する各部分をそれぞれ個々に扱ってきました。 しかし、特定の用途には機能の幾つかを纏めたICの方が使い易いです。

 PLLが高級な通信機や測定器などに使われていたころなら、モトローラ社の特殊なPLL用ICをたくさん並べた設計でもよかったのでしょう。 しかしコスト低減や小型化には向きません。 そこでより集積度を高めた専用のICが求められるようになりました。

 ちょうど、C-MOS ICが普及しはじめたころ車載CBトランシーバの輸出ブームが起こりました。 最初のころは水晶発振子を並べて多チャンネル化していました。 高価な水晶発振子は少しでも減らしたいところです。 そこでC-MOSを使ったPLL用のICが作られるようになりました。 C-MOSは消費電力が少なく高集積度の実現が容易だったからです。専用のC-MOS ICも量産効果でコストダウンできたのでしょう。 先に紹介したTC9122PやTC5081Pはそうした目的のICだった筈です。(これらは後に汎用に使われるようになりました)

 さらに集積化して基準発振器や基準分周器のほか、プログラマブル・カウンタ、そして位相比較器まで内蔵するようになります。 写真のNDC40013やLC7110はCBトランシーバを目的に作られたPLL用のLSIです。写真にはありませんが沖電気のMSM5807もジャンクのPLLユニットに使われていたので有名なPLL用LSIでした。 これらはVCO回路を除きPLL発振器に必要な機能のほとんどが集積されています。  性能はだいぶ違いますがMC145163Pも類似の目的ではないでしょうか。 また、CATVの発達やFM/AMラジオのデジタル選局などの目的でPLL方式の専用LSIが登場しています。 MB1504P、NJW1508、そしてTC9256Pはそのような用途のPLL用LSIです。

 こうした特定用途向けのPLL用も汎用に使えることがあります。 ただしCB用に作られた初期のC-MOS ICはプログラマブル・カウンタの上限周波数が低いのが欠点です。 せいぜい2MHzあたりまでしか扱えません。 7MHzのPLL発振器を作るのでさえプリスケーラや周波数変換が必要です。 死蔵しては勿体ないのですが回路を煩雑化させてまで使うメリットは少なそうなので見切りをつけても良いかも知れません。 逆に、MB1504やNJW1508はそれ単体でVHF〜UHFまで扱えるプリスケーラが内蔵されています。 上手に使えばマイクロ帯の機器にも活用できそうです。 何れにしてもPLL発振器の基本は同じですから設計法は押さえておきたいところです。

まだまだ続きますが一区切りがついたところでコーヒーブレークにでも致しましょう。 今日はこのあたりにしておきたいと思います。

                 ☆  ☆

 PLL回路を要素に分けて見てきました。 この中で位相比較器の定数、位相比較器ゲイン:Kpはこの先の設計で必ず使います。 ほかに、VCOの定数、VCO感度:Kvも重要な数字ですが、これは次回のテーマでもあります。 回路構成を要素ごとに詳しく扱っているとなかなか先に進みませんが出来上がった設計例を並べただけではあまり応用は利きません。 「周波数を変えたかったのでカットアンドトライで何とかでっち上げた」と言うような話も聞きます。 やはり基本的なことはきちんと理解しておきたいものです。 わかって設計すればトラブルが起こった際の対処も容易になるでしょう。

 以前はPLLを使って色々な発振器を作りました。 DDSモジュールが安価になったことから価値は薄れた感じもします。 しかしDDSを持ち出すほど細かい周波数ステップは必要なければPLL発振器の出番もありえます。 手持ちの部品を活用する意味からも見直したいと思っています。 DDSとコラボするような設計だってあります。 まだまだ使える技術でしょう。 次回は電圧制御発振器:VCOを集中的に扱います。 ではまた。 de JA9TTT/1

つづく)←リンクfm

2018年8月11日土曜日

【回路】7MHz PLL Oscillator (1)

7MHz帯のPLL発振器:その1
各種PLL用IC:Collection of PLL ICs
  これから何回かPLLをやろうと思います。何か必然性があって始めるわけじゃありません。 あえて言えばデバイス活用と設計法の纏めが目的と言ったところでしょうか。
 「何かにとっても役に立つ」などと言うつもりはありません。お暇でもあればお付き合い下さい。 このところ色々やっていて奥が深くてこれは面白いと思ったのでBlogにしました。先は急がないのでぼちぼちやります。 一応みなさんお好きなRF回路です。(笑) まずはイントロ編から。

                   ☆
 
 のっけから昔話になって恐縮ですが、初めて作った水晶発振器は6CB6と言う真空管を使った変形ピアース型だったように思います。  3.5MHzのFT-243型水晶を使い7MHzを得ていました。それで7MHzの送信機を作りました。

 しばらくは真空管を使った発振器の時代が続きましたが、やがてトランジスタを使うようになります。 特に受信系は半導体化したいと思いました。 ただ、当時のゲルマニウム・トランジスタは性能が悪くて苦労した記憶ばかり思い出されます。 そもそもウデも悪かったので苦労したのだと思いますが水晶発振子のアクティビティが低かったのも理由ではないかと思っているのです。hi

  オーディオも好きでしたがやがて無線の方向へ傾倒したので以来ずっと発振回路や発振素子は興味の対象でした。 周波数が安定していて任意の周波数が得られる発振器も研究テーマの一つです。 自励発振器は周波数の自由度はあっても良好な周波数安定度を得るのは至難です。 さりとて水晶発振では自由は利かず・・・ではVXOはと言えば今ほど水晶発振子が良くなかったようで意外に難しいものでした。 可変範囲を欲張ったのもマズかったのでしょう。

                   ☆

 PLL:Phase Locked Loop(位相同期発振器)という発振回路を目にしたのは1970年代の初めです。 かなり難しい内容だったのでほとんど理解できなかったと思います。 自動制御の理論もまだ習ってはいませんでした。  それが何をやろうとしているかはおぼろげにわかっても、ではどうしたら実現できるのかと言う部分は謎でしかなかったのです。 モトローラ社が積極的に推進していた印象があって、同社の特殊なPLL用ICを使った回路は試したくても入手困難かつ高価なので手の出せない難物だった記憶があります。(写真はパーツボックスにあったPLL関係IC)

 自ら試すことができるようになったのは数年後に輸出用CBトランシーバにPLLの専用ICが使われるようになってからでした。 いまのDDS発振器のように小刻みな周波数を得ることはできませんが、それでもかなり自在に周波数の安定した発振ができるようになりとても嬉しかったものです。 その後、CBブームも去って信越電機商会(*1)にジャンクのPLLユニットが登場します。 それを切っ掛けに興味を持った自作HAMも多かったようでした。 CQ誌に何度も活用記事が登場したのはご存知の通りです。 *1:いまの秋月電子通商

                  ☆  ☆

7MHz帯のPLL発振器
 発振器は無線通信には欠かせません。 これはアナログ式であろうとデジタル式であろうとも重要さは同じでしょう。  すでにDDSや新世代のPLL式専用チップも登場しており、初めの写真のような従来型のPLL用ICは時代遅れでしょうか。 そろそろ懐かしい技術になりつつあるのかも知れません。

 ここでは7MHz帯のPLLを題材としてシンプルなPLL式発振器を試作してみます。 死蔵されつつあるPLL用ICの活用法を纏めておく機会にしたいと思います。 用途によっては従来型PLLの技術を頼った方がうまく行くこともあります。

 PLL発振器は周波数が可変できてしかも安定度の高い発振器です。 概略の仕様は:発振周波数範囲=7〜8MHz、周波数ステップ=10kHz・・・とします。 ただし、各10kHzステップの間は連続可変式として自在に設定できるようにしました。 従って7MHzから8MHz(*2)の間を隙間なくカバーでき、水晶発振器なみの周波数安定度を持った発振器になります。 典型的な用途としては7MHz帯のCW送信機やAM送信機のVFOがあるほか受信機の局発回路なども考えられましょう。 *2:正しくは、7.990MHzまでですが、スイッチを増やせば8.000MHz以上も可です。

写真は試作した7MHz帯のPLL発振器。 試作はブレッドボードが手軽ですが実用品はコンパクトに製作して良くシールドする必要があります。

 他の周波数帯への変更も難しくありません。 ほぼ同じ回路図のままでHF帯の各HAMバンド対応の発振器になります。 ただし、各バンドごと最適化のため回路定数の変更は必要です。 さらに50MHz帯用には電源電圧のアップを要しますがHF帯とほぼ同じように製作できます。 144MHz帯用はHF帯に周波数変換する方式が適当でしょう。  いずれにしても回路定数を最適化するには少しだけ計算が必要です。 しかしその計算は高度なものではありません。 四則演算(加減乗除)ができれば誰にでもできます。 筆算では位取りを間違いやすいので算盤や電卓を使ってください。(笑)

 今回(Part 1)は手始めとして事前に設計の済んでいる7MHz帯のPLL式発振器を試作し、出力信号を観測するところまでを扱います。どんなものが作れるのかまずは実際にやってみましょう。 PLL回路を構成する各回路要素の検討と詳しい設計の話しは続編で予定します。 いくらか時代遅れに感じるかも知れませんが、有用性がなくなった訳ではありません。 RF回路の基礎技術の一つとして良く研究しておけばいつか役立つこともあるでしょう。 せっかくここまでお読みいただいたのでしたら、この先もお付き合いください。 PLLに黒魔術は必要ありません。誰でも面白いようにロックするPLLが作れます。(笑)

MC145163P・・高機能なPLL用IC
 MC145163PというICはPLL用のLSIとしてかなり後発でした。 PLL化されたCBトランシーバの輸出が盛んだった当時には存在しませんでした。 しかし後発なので機能は充実しており性能も優秀です。

 ここではなるべく簡略にPLL回路を試すことを目標にしています。  高機能なMC145163Pを使って部品数を減らしました。 28ピンの大きなICですが、外付けで必要なものは電圧制御発振器:VCOくらいです。 すっきりしたPLL回路が実現できます。 活用可能な周波数範囲を決める内蔵の「プログラマブル・カウンタ」の上限周波数もVdd=5Vのとき25MHz(標準)と高くなっています。 それ以上の周波数ではプリスケーラを使う必要も出てきますが、必要最小限の分周数で済むためループゲインを消費しないと言ったメリットがあります。 これ一つで色々試せるので便利なPLL用LSIだと思います。

 残念ながらMC145163Pはディスコン(Discontinued:廃止品)です。 まだなんとか手に入るようなので幾つか持っていると自作無線機の幅が広がるでしょう。  以前は比較的高価なICでしたが時代遅れになったからでしょうか? いくらか値崩れ気味のようです。

写真は基準発振の10.24MHzをVXO化する以前のものです。MC145163Pに内蔵の発振回路で水晶発振させています。後ほど外付け回路でVXO化してMC145163Pに与えるよう変更しました。

# まずはMC145163Pで始めますが、後ほどほかのPLL用ICを使った検討もしておきましょう。(Part 3あたり?)

 【MC145163Pの機能
 MC145163Pの内部回路ブロック図です。

 基準となる水晶発振器とそれを分周して比較周波数を得るための「リファレンス・カウンタ」が内蔵されています。 リファレンス・カウンタの分周比は1/512、1/1024、1/2048、1/4096から選べます。

 発振回路のバイアス用帰還抵抗は内蔵ですが負荷容量(2個)は外付けです。 その負荷容量を可変することにより周波数合わせを行ないます。 外部の発振器から基準周波数を与えることもできす。 一例ですが、10.24MHzの水晶発振子を使い1/1024の分周を選ぶと比較周波数は10kHzとなり、10kHz刻みに発振するPLL式の発振器が作れます。

 VCOからの信号を分周する「プログラマブル・カウンタ」は4桁のBCDコードで設定します。分周数はN=3〜9999が設定できます。 無線での用途の場合、あまり小さなNに設定するケースはまれだと思われますが、それでも数1000チャネルの周波数切り替えができる発振器が作れます。 PLL式発振器の出力周波数は比較周波数×分周数です。 いま、比較周波数が10kHzとすれば、分周数:N=700なら発振周波数は700×10=7,000kHz (=7MHz)となります。

 ほかに重要な機能として位相比較器が内蔵されています。 残念ながらループフィルタ用のアンプは付いていません。 従ってアクティブタイプのループフィルタを構成したい時には外付けになります。 あまり使われないのかもしれませんが、同社のMC4044タイプのような形式の位相比較器+ループフィルタを構成することもできるようです。  この部分には ロック外れを検知する機能があり万一の誤動作の時に発振を停止させることができます。

 左図には簡単な機能説明などを記入してあります。 この資料だけで完全な設計ができる訳ではありませんが下記の回路を試すには十分でしょう。 ネットの検索で詳しいデータシート(和文)が入手できるので、MC145163Pを手に入れたなら機会を見てダウンロードしておくと役立ちます。

7MHz用PLL発振器・回路図
 さっそく製作実例です。 最初に決めておいた仕様が実現できるような回路になっています。(2018.08.22:Ver.1.0.1に改版)

 電圧制御発振器:VCO回路はトランジスタやFETを使って構成することもできますが、モトローラ社の専用ICである:MC1648Pを使いました。VCO専用のICを使うことで製作の再現性は向上します。 ただしMC1648Pは入手しにくいかも知れません。 同種の改良版のICがONセミ社で販売されています。

 周波数の可変にはバリキャップ:FC-52M(富士通)を使います。 FC-52Mは廃止品なので入手難ですから秋月電子通商で売られている1SV228(秋月で5個150円)などで代替します。 代替すると少し設計が変わりますが、とりあえずそのまま試しても良いでしょう。うまく周波数ロックするはずです。 1SV228は2素子複合型ですが、片側のみ単独で使います。他方は遊ばせておきます。

 VCO出力に使ってあるTT1-6(MCL:mini circuits lab.社製)というRFトランスはあまり安い部品ではありません。ここでは試作を手っ取り早く行なうために使いました。 フェライトビース:FB-801-#43にφ0.16mmのポリウレタン電線を6回トリファイラ巻きしたものでそっくり代替できます。 2SK544Fは2SK241GRもしくは2SK439F(ピン配置は要注意)で代替できます。この回路には2SK19、2SK192A、BF256BやJ310は適していません。

 最初は10.24MHzの基準発振にMC145163Pに内蔵の発振回路を使いました。 しかし、この部分を可変周波型水晶発振器:VXO化するのは少し難しいようです。(できない訳ではありません) そこで動作が確実で実績のある外付けのVXO回路を使うことにしました。 この基準発振器の周波数を変えることによって10kHzステップの間を自在に可変するわけです。 2SC2668YでVXO発振させ2SK544FでバッファしてからMC145163Pに与えます。

 このVXO回路は周波数安定度が重要です。しかし周波数の可変範囲はわずか15kHzほど(10.24MHzに対して約0.14%)と狭いためたいへん良好です。 無理にたくさん周波数を引っ張ったVXOとは違い普通の水晶発振器と同等の周波数安定度が得られます。 従って最終的に得られる7MHz帯のPLL発振出力も安定度の高いものになっています。  発振回路の2SC2668Yは2SC1923Yなど高周波小信号用のトランジスタで代替できます。

参考:10.24MHzの水晶発振子はaitendoなどで購入できます。同店で売られている水晶発振子(HC-49/US)はアクティビティにバラツキがあるのでうまく発振できない時は幾つか交換してみます。

 MC145163Pの位相比較器から出力されるのはパルス波形です。これを平滑化してVCO回路のバリキャップに加えます。 この平滑回路は「ループ・フィルタ」と呼ばれるものです。 回路としては簡単なローパスフィルタそのものです。 PLL回路の設計は最終的にはループ・フィルタの設計に帰結するとも言えるほど重要なものです。 ここでは設計済みですのでこのまま作れば支障なく動作してくれます。 低インピーダンス型の設計になっています。

 ループフィルタとバリキャップとの間には2段のバッファアンプを入れてあります。 このようにするとVCOとの干渉が断てるので有利ですがアンプ自身にもわずかなノイズがあるためC/Nの点では幾らか不利になります。 しかしそれに勝るメリットがありますから入れておくことにします。

 ここではICL7621DCPAというIntersil社(現:Renesas Electronics社)のDual C-MOS OP-Amp.を使いました。 手持ちがあったので使いましたが、ICL7621はだいぶ旧式かも知れません。 5Vの単電源で使用できレール・トゥ・レール入出力特性を持った2回路入りOP-Amp.ならたいていの物が使えます。 新たに購入するのでしたらLMC6482AIN(秋月で@180円)が推奨品です。

 【7MHz PLLのスペクトラム・1
 各部の説明の前にこの発振器で得られた信号のスペクトラムを観測しておきます。 まずは、信号の上下5kHzずつ、全体で10kHzの範囲で観測してみます。

 よくできた水晶発振器と比べると、一見してPLL式の発振器であることがわかります。 十分シャープなスペクトラムが得られてはいますが、どうしても裾野を引く特性になります。 この例では+1kHz離れたところで-67dBですからなかなか良好です。 これは-78dBc/Hzくらいですが、キャリヤから1kHzのポイントであることに注目してください。10kHz離れるとさらに20dBくらい下がります。

 実際この信号をCWモードの受信機で聞いてみても綺麗なシングルトーンとして聞こえます。 ダメなPLLだとスペアナで見るまでもなく、受信機で聞いただけであたかもブザーのような濁った音色になるので簡単にわかります。

 位相比較器のデッドゾーンからできるだけ逃れるためループフィルタおよび周りの回路を低インピーダンスに設計しています。 裾野の部分も滑らかに落ちていますのでループフィルタ部分の設計に問題のないことがわかります。

 【7MHz PLLのスペクトラム・2
 信号の上下50kHzずつ、全体で100kHzの幅で観測しています。 測定系のノイズフロアはこの状態で信号のピークから見て-80dBくらいです。 特にスプリアスも見られずたいへん綺麗です。

 ループフィルタの設計が良くないとリファレンスの漏れが発生します。リファレンス・フィードスルーという現象です。 このPLLではリファレンスは10kHzですから、そのような場合には主信号の上下に10kHzおきのスプリアスが見られるようになります。 まったく見られませんのでうまくいっている証拠です。 漏れ出るリファレンス成分を減衰させるようなフィルタが追加してあるのも効果的なのでしょう。

 【7MHz PLLのスペクトラム・3
 さらに拡大して信号の上下500kHz、全体では1MHzの幅で観測してみました。 このくらいの周波数スパンで観測すると出来の良くないDDS発振器などではそろそろスプリアスが引っ掛かるようになります。

 このPLLの場合、信号のごく近傍はともかくこの範囲に発生するスプリアスの要因はないためとても綺麗でした。 DDS発振器のスプリアスを嫌ってPLLと組み合わせて信号をクリーニングすると言った回路手法も高級な機器では見られます。こうした特性を狙ってのことなのでしょう。 そのような意味で従来型のPLLも捨てがたいものがあると思います。目的によっては非常に有効な回路です。

 【7MHz PLLのスプリアス
 VCOに使ったMC1648Pの出力は基本的に矩形波です。 ただし、発振振幅を制御するAGCの効き方を調整すると正弦波に近づけることができます。ベストポイントは個々に調整が必要で、上記回路図のR11:4.3kΩで加減します。 この例では少し発振振幅を欲張ったためか2〜5次の高調波が多めに見えています。

 VCOの後は広帯域な増幅器で、まだ何のフィルタも入れていないので高調波が多いのはやむを得ません。 CW送信機に使う場合、何段かC級増幅したあと良く切れるローパスフィルタを入れます。  その部分で十分に除去できるのでこの段階では少々高調波があっても支障はありません。 受信機の局発に使う場合はスプリアスを十分落とす方が良いのでπ型2段くらいのLPFを付加しておきます。

 10.24MHzの漏れがいくらか見えますが、VCOの後の広帯域アンプ(2SK544F)への直接飛び込みのようでした。測定プローブへの結合もあるようです。 実用する際にはリファレンスの部分を独立させてシールドしておくと良さそうです。 そうすれば漏れはほとんど感じられなくなります。

 【MC1648Pを使ったVCO
 VCOに使ったMC1648Pはもはや古典的なICです。 しかしLC発振回路の周波数をバリキャップで可変する形式のVCOが確実に作れるためなかなか重宝です。

 良いICなのですがあまり使われなかったように思います。 それほど使われなかった理由は2つあると思っています。 一つはコストです。 大して高機能でもないのにMC1648Pはだいぶ高価なICでした。 これを使わなくてもVCOは作れます。 そうなると使用量が増えないのでコストも下がらなかったものと思います。 もう一つは発振出力のC/Nが良くないと言われています。 すでに見てきたような発振スペクトラムが得られますから、必ずしも劣っているとは思いません。 しかしトランジスタやFETで「上手に」作ったVCOならもう少し良いC/Nが期待できるでしょう。

 MC1648Pは発振振幅を抑えることによりバリキャップでの自己整流が発生しないよう考えられています。それだけ使い易くできている訳です。 しかし発振振幅を抑えた副作用でLCタンク回路の蓄積エネルギーが小さくなってしまいC/Nの点で不利になったようです。

 幾らか欠点はありますが一定の性能が保証されたVCOが確実に作れるというメリットは大きいので使ってみました。 すでにディスコンのデバイスですが表面実装型の改良型が登場しています。 性能も向上しているのでプロフェッショナルな用途にはそちらを使うべきでしょう。

のちほど入手容易なパーツを使ってMC1648Pの代替回路を試みます。

 【ループフィルタとバッファ・アンプ
 ループフィルタの部分は位相比較器(フェーズ・ディテクタ:Phase Detector : PDと略)と不可分の回路です。

 しかしここではPDはMC145163Pに内蔵されていますから独立した部品としては存在しません。 位相比較器:PDの特性もPLLの性能に大きく影響するのでとても重要です。

 幸いMC145163PのPDはなかなか優秀なようでした。 他のPDと比較しても何ら遜色のない・・むしろ優秀なくらいの性能です。 MC145163Pは後発のPLL用ICですから設計が新しくて内部のC-MOSが高速だからでしょう。

 ループフィルタは一種のローパスフィルタです。 あるいは平滑回路とも言えるものです。 位相比較器からの出力はパルス幅が2つの入力信号の位相差に比例したパルス波形として得られます。 それを平均化して得られた直流的な電位(電圧)を電圧制御発振器:VCO回路・・・具体的にはバリキャップ・・・に加えて周波数(位相)を制御します。

 可変容量ダイオード:Vari-Capを使ったVCO回路では自身の発振電圧がダイオードそのものにも加わっています。 バリキャップ(元もとは商品名でした)とは言っても、本質はシリコンダイオードそのものです。順方向電圧を超える発振電圧が端子間に加われば整流されて電流が流れます。 この電流がループフィルタの部分に流れ込むと制御電圧の変動をまねき、それを間欠的に補正するような動作が始まります。 この動作はPLLの信号純度を損なうため注意すべきす。

 ではどうすべきか? この回路例のようにバリキャップとループフィルタの間にOP-Amp.を使ったバッファアンプを置くことで影響をなくすことができます。 こうしたバッファアンプは原理上は必要ないものですが、性能を改善する効果があります。 発振にMC1648Pを使いましたのでバッファアンプは必ずしも必要なさそうです。しかし実際には制御電圧が小さくなってくると影響が現れはじめます。 さらに別の形式のVCOを試すことも考えて付けておきました。

 電源電圧は+5Vだけですから、バッファアンプには片電源だけでも動作する形式のOP-Amp.を使います。 また電源電圧はわずか5Vと小さいので出力電圧が電源電圧の範囲いっぱいに振れる入出力が「レール・トゥ・レール型」のOP-Amp.を選びます。 条件に合うOP-Amp.は各種発売されていて選択に困るほどですができるだけローノイズな製品を選びたいものです。 容量性の負荷で発振しにくいOP-ampと言うのも条件です。 ICL7621DCPAはそう言う意味ではかなり旧式でしょう。しかし写真の程度のスペクトラムは得られますから実用上の支障はあまりなさそうでした。 もちろん新しいタイプのC-MOS OP-Ampならなお良いでしょう。

参考:このバッファアンプは、後に説明のある 「リファレンス・フィルタ」としての働きも持っています。 リファレンス・フィルタは比較周波数成分の漏れがVCOに及ぶのを軽減させるためのものです。

 【10.24MHz:VXO式リファレンス発振器
 PLLを使えば周波数が水晶発振器なみに安定している発振出力が得られます。 しかし10kHzステップでは物足りません。

 例えば7MHz帯のCW送信機に使いたいと思っても7000kHzちょうどではオフバンドになるので使えません。 使える周波数は7010kHzと7020kHzの2波しかないのです。(注:2015年のバンド利用プランの改訂でCW局は一応7045kHzまで出られるようになったが、それでも4波である)

 では1kHzステップで設計したら解決だろうと言う声も聞こえてきます。 しかし実際にやってみますと1kHzステップで満足できる品位の信号を得るにはなかなか高度な技術を要します。 1kHzおきにロックさせるのは難しくありませんが、綺麗な信号を得るのは簡単ではないのです。 容易に製作可能なPLLはやはり10kHzステップくらいが無難なところでした。かなり頑張っても5kHzステップまでが間違いないところです。

 そこで、10kHzステップを埋められるよう10kHzの間を自在に可変できるようにします。  いくつか手法はありますが、いちばん簡単な手としてリファレンス(基準)信号を可変してやります。 「基準」を動かすなんて野蛮だと言われそうですが、10.240MHzをVXOすればそれに伴ってPLLで得られる信号の方も動いてくれます。

 7MHz帯で10kHz動けば良いので、10/7000=0.0014285・・・の割合だけ動かせばOKです。 これは10.240MHzにおいて約14.6kHzということになります。 なお、お気付きのように8MHzでは、10/8000=0.00125なので10.24MHzにて12.8kHzだけ動かせば10kHzの可変幅が得られます。 発振周波数が7MHzのときと8MHzとでは必要な可変量が変わってしまいますがこのような方法で行なう限りやむを得ません。 7MHzで設計しておき、使用する上では8MHzの時には可変できる周波数範囲が幾らか広くなることをわかっていれば支障ないと思います。

 7MHzのHAM Bandに限って言えばバンドの上下で200kHzの違いですから、可変幅の違いは300Hz以下に収まります。 さらにCWバンドに限れば差はもっと少ないのでダイヤル板に目盛を記入してしまっても支障はないくらいでしょう。 なお、7000kHzちょうどにセットしてVXOするとバンドの下の方へオフバンドしてしまいます。 必ず7010kHzの設定からVXOするようにします。それで7010kHzから下の方へ10kHzだけ・・・即ち7000kHzまで自在に可変できます。(MC145163PはN=701に設定します)

 VXO回路は発振に高周波用トランジスタ:2SC2668Yを使いました。 可変範囲を少しでも広く取りたい時にはFETを使った方がやや有利なようです。 しかし、ここではVXOとは言っても0.14%ほどの可変範囲しか必要としません。 普通のトランジスタを使った回路でもまったく支障ありません。FETよりもgmが大きいので発振は容易です。 周波数安定度を見ましたが普通の水晶発振器・・・要するにVXO回路ではない発振回路と違いません。 この周波数安定度はPLLにもそのまま反映されますので7MHz帯の出力も十分安定した周波数が得られます。

 VXO回路といえばいわゆる「VXOコイル」が議論になります。 ここでは18μHのマイクロインダクタが適当でした。このインダクタンスは水晶発振子によって最適値が異なります。 20μH前後で可変できるようなインダクタを使うと製作後の調整が容易です。 既製品ではFCZコイルの07S1.9が使えそうです。 しかし約20μHの可変インダクタはコア入りのボビンに巻けば簡単に自作できます。 無理にFCZコイルを探すまでもないでしょう。

  VXO回路に使うバリコンは最大容量が30〜50pFくらいの物が良いです。 エアーバリコンが好ましいのですがポリバリコンでも一応使えます。 調整はバリコンの可変範囲いっぱいで10kHzが可変できるようにすれば良い訳です。 必要以上に広く可変する意味はありませんが、狭すぎると発生できない周波数ができてしまいます。 VXOコイルとバリコンに並列のトリマコンデンサで可変範囲を加減します。 バリコンがほぼ抜けた位置で10.240MHzを発振し最大容量にしたときそこから15kHzほど周波数が下がるように合わせます。(7MHz帯で出力周波数をみて10kHzの可変幅になるようにしても同じです)

リファレンス発振器のスペクトラム
 リファレンスのスペクトラムが綺麗でなければPLLの出力信号もそれなりになってしまいます。

 写真は10.24MHzのスペクトラムを10kHzのスパンで観測したものです。 ご覧のように非常に綺麗です。

 あまり言いたくないのですが上の方で見たPLLで得た7MHzの信号と比較してみてください。 おなじ10kHzスパンの観測と比較すれば一目瞭然でしょう。 水晶発振のこれはスペクトラムが細く裾野の部分もスッキリしています。 それだけ付随するノイズや揺らぎが少ないことを示しているわけです。  水晶発振ならこの程度の信号が普通に得られるのですから、やはり真に綺麗な信号が欲しければこれに勝るものはありません。

 なんだかPLL式発振器の弱点が暴露されたような感じになってしまいました。 入念に作ったPLLでも得られる信号は水晶発振には幾らか劣ります。 しかし十分な実用性がありますので悲観的になる必要はないと思います。 かつて全盛だったPLL式の発振器を使っていたトランシーバ・・・例えばTS-820やFT-901の局発だって同じようなものだった筈です。 いずれも当時の名機です。 お使いだったお方はそれで支障を感じたことも無かったでしょう。 ここで作ったPLLくらいの性能が得られていればオンエアしていて他局の迷惑にもなりません。 実際にモニタしてみても綺麗なトーンが実現できています。  理想的ではなくとも電子回路は実用的な性能が得られれば良い訳です。 電波法で規定されている信号近傍のスプリアス基準にもまったく抵触しません。(高調波対策はオーバーオールで行ないます)

                 ☆  ☆  ☆

 まずは7MHz帯のPLL式発振器を作ってみました。 これ自体で7MHz帯のCW送信機のエキサイタとして使えます。 2〜3ステージの増幅段を追加すれば実用的なパワーを持った送信機が完成できます。 終段に変調をかければAM送信機にもなりえます。 スタンバイの制御はMC1648Pの電源部で行ないます。 VXO部分は受信中も動作させたままにすれば良好な周波数安定度が維持できるでしょう。 発振周波数の切り替えは7MHz帯のCWバンドに限ればわずか3chですから簡単なスイッチで済みます。 VXO部分は10kHzをカバーすれば良いのでバリコンにツマミを直付したようなダイヤルでも十分行けます。なるべく180°近く展開し、大きめのつまみを付ければ操作しやすくなります。

 今となってはマイコンでDDS ICや新世代PLL ICを制御した方がスマートかもしれませんが、こうした方法でも実用的な発振器は作れます。周波数安定度も良好です。 実用的なものが作れるのですからこうした部品を眠らせておいたら勿体ないでしょう。 将来価値が出る可能性はありませんから今のうちに活用するのが良さそうです。 プログラムなんかいっさい書かなくても使えるところがいちばん有難いところかも知れませんね。(笑)

 評価手段の進歩で以前は不可能だったような解析が可能になったのも今頃になってPLL回路を始めた切っ掛けです。 昔は評価もそこそこでロックさえすれば良いと言った感じで使いました。  あまり酷いものは五感でわかったので実害は無かったと思っています。 しかしデバイスや回路を吟味して、もう少し定量的に突っ込んだ検討ができたら楽しいでしょう。

 PLL回路に使えるICの手持ちがあれば自作プロジェクトに動員するのも面白いでしょう。パーツボックスに眠らせておいては可哀想です。 PLL用のLSI:MC145163PやVCO用のIC:MC1648Pは既にポピュラーな存在ではないかもしれません。 そんな時は最初の写真にあるように他のPLL用ICでも類似の設計はできます。 次回以降でそのあたりも交えて話を進めたいと思っています。 ではまた。 de JA9TTT/1

つづく)←リンク nm

2018年7月28日土曜日

【回路】Short Wave Radio Design (2)

【回路:短波ラジオの設計・試作・その2】<TA2003P編>

 【TA2003Pで作る短波ラジオ
 しばらくラジオじゃない電子回路が続きましたが、久しぶりにRadioがテーマです。

 このBlogにはトランジスタを主役に使って短波ラジオを製作するページがあります。  トランジスタでスーパー形式の短波ラジオは珍らしいらしく、思ったよりも興味を持って頂けたようです。 ご覧のお方もぼちぼち続いていて最近は海外からのお客さんもあるみたいです。

  短波ラジオはトランジスタで作れるのはもちろんですが、ラジオ用のICを使ったらもっとたやすく製作できるのでしょうか? そうした期待から試みたのがこのBlogです。 ラジオ用ICには既にお馴染み(?)になったTA2003Pを使いました。 これはいま現在でも簡単に手に入ります。

                   ☆

 世の中は完全にデジタル時代になっています。 手っ取り早く短波放送を聴くのが目的でラジオに取り組むのでしたらSDRを使ったキットがお薦めです。 

 ここでは従来型の・・・要するにアナログ式で短波ラジオを作ります。 アナログとは言っても進歩した新世代のラジオ用ICを使います。 もちろん性能が確実なスーパー・ヘテロダイン方式です。 部品が少ないうえ調整箇所もわずかなので製作は容易なのですが性能もあなどれません。 もちろん製作者によって出来ぐあいも異なります。それでも、ぜんぶトランジスタで作るよりも高性能化しやすいと感じました。(写真:ラジオ全景)

 工夫次第でHAM局用の通信機にすることもできますが、やはりラジオ用のICチップなので短波ラジオの範囲で製作するのが良さそうです。 そのあたりも含めて話を進めてみたいと思います。 そろそろ夏休みでお暇なのでしたらICを使った短波ラジオの世界で遊んでみてはいかがでしょうか?

 【TA2003P短波ラジオ回路図
 ラジオ用のIC:TA2003Pを使った短波ラジオです。 TA2003Pについては過去のBlog(←リンク)に説明があります。 ICの中身を詳しく知りたいのでしたらそちらに戻れば確認できます。

 この短波ラジオの基本設計は。トランジスタで作った短波ラジオ(←リンク)と同じにしました。 従って受信周波数は同じく3.4〜10.2MHzになっています。ただし変更も容易です。 HAMバンド専用機ではなくて普通の短波ラジオの設計です。 フェライト・バーアンテナは使っていませんからワイヤーアンテナなどを外付けして受信します。 選択度は簡易なセラミック・フィルタで得ています。 IFT(中間周波トランス)は一つも使っていないので中間周波増幅部は完全無調整です。 もちろんスーパー・ヘテロダイン形式ですから受信範囲を決める局部発振器(Local OSC)と入力同調回路のトラッキング調整は必須です。受信感度に直結しますから、ここだけはきちんと調整する必要があります。

 BFO(唸周波発振器:Beat Frequency Oscillator)は短波帯のラジオには不可欠なように思います。 もちろんHAMバンドの交信を聞くには必須です。 BFOがなければ、無線電信(CW)や単側波帯通信(SSB:Single Side Band)を復調できません。 もっぱら国際放送のようなAM放送波だけを受信対象にするのでしたら不要ですが、ここでは設計に含めておくことにしました。 必要を感じないのでしたらその部分を作らなければ良いわけです。

 Sメータ回路を付けました。できるだけ高感度なメーターが適します。理想を言えば100μAフルスケールくらいのメーターが良いです。250μA FSのラジケータでもまずまず使えます。 振れ具合はR6:4.7kΩで加減できます。 簡易なものですが受信信号の強さがある程度わかります。 また放送局に正しく同調をとるときにも役立ちます。 短波帯の電波は電離層の反射を使って遠方まで伝搬します。 電離層の状態は時々刻々変化していてSメータを見ていると短波の性質がビジュアルに伝わってきます。 メーター指針の動きに短波らしさが感じられますね。

 ラジオの主要な機能はTA2003P一つで実現できます。 出力として音声周波数の信号が得られます。 そこにクリスタル・イヤフォンを繋げばただちに音として聞くことができます。 しかしスピーカを鳴らすには非力ですからさらに増幅が必要です。 そのための増幅器がLM386です。 ここではセカンドソース品(開発メーカー以外が作った同等品)のNJM386BD(新日本無線:NJRC製)を使いました。もちろんオリジナルのLM386N、LM386N-1またはLM386N-3(ナショセミ・TI製)でも良いです。 これでスピーカを鳴らすことができます。

 電源電圧は+5Vで設計しました。 TA2003Pは3Vくらいでも十分に働きます。 しかし低周波増幅のLM386は少なくとも5Vほど必要です。 乾電池4本直列で約6Vを供給しても良いでしょう。 但し最大でも+7Vまでにします。 7Vを超えるとTA2003Pが壊れる恐れがあります。 もし12Vの電源で使いたいのでしたら、μA7805などの3端子レギュレータを使って5Vまで落とします。(μA7806で6Vに落としても大丈夫です)

 ラジオの主要な機能はTA2003PとLM386の2つのICだけで実現できます。 ただしBFO回路は通信機的な機能のため普通のラジオ用ICには内蔵されていません。 従ってトランジスタを使って外付けすることになります。 この例ではごく簡単な1石の発振回路にしました。ハートレー型のLC発振器です。
  2SC1815で設計しましたが、ごく一般的な小信号用トランジスタ(NPN型)ならなんでも使えます。 たとえば2SC183、2SC372、2SC458、2SC536、2SC538、2SC710、2SC828、2SC838、2SC945、2SC2458、2N2222、2N3904、BC548など幾らでもあります。 2SC1815と形状や足の並びが異なるものもあるので確認してから使ってください。 発振用のBFOコイルについては後ほど説明があります。

 【TA2003P短波ラジオ:RF/IF部
 TA2003Pで構成した高周波部分です。 TA2003Pは外付け部品の少ないラジオ用ICです。  主要な部品は、ICのほかにアンテナ・コイル、局発コイル、バリコン、そして中間周波フィルタ(セラミック・フィルタ)です。 あとは数個のコンデンサのみです。

 これだけの部品だけで感度の高い短波ラジオが作れるのですから、さすがにラジオ専用のICです。 十分な増幅度が得られるほか、自動利得調整(AGC:Automatic Gain Control)もよく効きます。

 使い方のコツは、周囲をGND回路で囲むようにし、TA2003PのGNDピン(2番と9番ピン)を最短距離でGNDに接続します。 また電源ピン(6番ピン)とGND 回路の間には最短距離でバイパス・コンデンサを接続します。 基本的に高周波回路ですから、配線はなるべく短くすると動作が安定します。

 ICを使った回路は、多くの機能が一箇所に集中することになります。 そのためコンパクトに作れる反面、IC周辺への部品配置が難しくなってしまいます。 写真のようにアンテナコイルと局発コイルはICの左右に別れて配置してあります。 2連バリコンで連携して同調されますから、2つのコイルはできれば近くに置きたいところですがICのピン配置を考えると写真のようになりました。

 もちろんブレッドボードではなく、ユニバーサル基板に作ったり、新たに基板設計するのでしたら最適な答えは変わってきます。 ICのピン配置と周辺部品の接続状況をよく見ながら部品の配置を決めます。

 【TA2003P短波ラジオのコイル製作図
 ほとんどの部品は市販品が容易に手に入りますけれど、2つあるコイルだけは売っていません。 製作に必要な材料を手に入れて自分で巻きます。 以前のBlog記事、トランジスタで作った短波ラジオ(←リンク)と同じようなコイルを巻きます。  巻き数は少し違いますが、作り方はまったく同じです。 コイルの材料になる、ボビン(巻き枠)や巻き線など製作の実際は以前の記事を参照してください。

 受信周波数範囲は同じですから、各コイルはほとんど類似の仕様になります。 以前の短波ラジオのBlogの時に製作してあればそのまま試すことも可能です。 ただし、本式にはアンテナコイルをTA2003Pに最適化すべきです。 また局発コイルもリンク側(4番ピンと6番ピンの間)の巻き数は7.5回巻きよりもやや多め(8〜10回巻き)にすべきです。

 色々調べたのですが、合わせて使うバリコンの入手が問題になりそうでした。 aitendoの「443AB」が手に入れば安価で良かったのですが品切れが続いています。 ここでは手持ちから最大容量が275pFの「等容量型の2連ポリバリコン」を使いました。 最大容量が250pFから300pFくらいまでの2連バリコンならそのままの設計でもとりあえず使えます。 なお、必ず「等容量型」の2連バリコンを使います。 中波のラジオ製作でおなじみのトラッキングレス型バリコンは短波ラジオには使えません。 トラッキングレス型も2連バリコンの一種なのですが2つあるセクションの容量値は異なっています。 中波のラジオに使うとトラッキング調整が簡単に済むよう特別に作られている専用の部品ですから短波ラジオにはうまくないのです。 必ず等容量型の2連バリコンを使います。

 等容量型の2連ポリバリコンも昔は秋葉原の店頭で手に入ったのですが、いまでは困難です。 ネットで探してみましょう。

参考:窮余の策として真空管用の最大容量が430pFのエアー型2連バリコンも使えるのですが、コイルの再設計を要します。 以下の数字を参照のうえ、同様に製作してください。

真空管回路用としてごく一般的なエアーバリコンは12〜430pFの可変範囲を持ちます。

(1)ANTコイルT1:4.66μH・・・(同調側)
(2)ストレー容量を含んだトリマ・コンデンサC4の容量:40pF
(3)OSCコイルT2:4.07μH・・・(同調側)
(4)ストレー容量を含んだトリマ・コンデンサC3の容量:43pF
(5)パッディング・コンデンサC2は:2984pF(2700pFまたは3000pFで良い)
・・・となります。

なお、小型ホームラジオ用と称した最大容量が300pFの2連エアーバリコンも見かけます。それを使うには上記の図表に示した設計のまま製作して大丈夫です。 エアーバリコンはポリバリコンよりもいくぶん周波数安定度が良くなるので手持ちがあれば活用されてください。

所定のインダクタンスとなるよう、各コイルを巻き、最大容量が30〜50pFくらいのトリマコンデンサと組み合わせて構成します。エアーバリコンは巨大なので配線のストレー容量が大きくなりがちです。ストレー容量を増やさぬよう部品配置をよく考え、最短配線に心がけます。

 【TA2003P短波ラジオ:低周波部
 LM386N / NJM386BDを使った低周波増幅回路です。 ゲイン(増幅度)は約100倍です。 最大出力は8Ωのスピーカを繋いだとき約150mWです。

 こうしたラジオは回路全体として見たとき、非常にハイゲインです。 少なく見積もっても10万倍(100dB)以上のゲインがあって部品配置や配線状態が不適切なら簡単に発振が起こります。 その対策の一つとしてLM386の部分に電源経由で信号の回り込みが起こりにくいようデカップリング回路(減結合回路)を設けています。 R9(10Ω)とC17(470μF)がそれです。効果が不十分ならC17の容量をもっと増やしてみます。

 短波ラジオですからHi-Fiな設計にはしていませんが、国際放送の聴取やHAMの交信を傍受するには十分な音質です。 音の良し悪しはスピーカで決まる部分が大きいので、良い音で聴きたいのでしたらアンプをいじるよりも、大きくて効率の良いスピーカに変えると効果的です。ちっぽけなスピーカではアンプで幾ら頑張っても貧相な音になるのは当然でしょう。

 【TA2003P短波ラジオ:BFO部
 無線電信:CWやSSB通信を復調するためのBFO回路です。 発振周波数は455kHz付近です。 正確な発振周波数は選択度を決める帯域フィルタの特性との兼ね合いで決めるべきです。

  ここで使った帯域フィルタ:CF1(村田製作所:CFU-455H)は通信機用とは違います。 いささか特性が甘いため、BFOはかなり大雑把な発振周波数で支障はありません。 周波数カウンタがあれば455kHz ±2kHzくらいに合わせておけば良いでしょう。 本格的なBFOは発振周波数が可変できるようにします。 しかし、ここでは簡易版ですからその必要を感じません。 製作後にいちどBFOコイルのコアを回して周波数合わせをしておけば十分そうでした。 (参考:選択度が甘いのでダイレクト・コンバージョン受信機のような受信法になるわけです)

 BFOコイルはトランジスタ・ラジオ用として市販されているIFT(中間周波トランス)を流用します。 たいていのIFTは3個組になっていて、調整コアの色は「黄・白・黒」でしょう。 ここでは何色でも使えますが、もし単品で購入できるなら白色か黄色にします。

 ここで使った7mm角のIFTと同じものでない限り発振強度の再調整が必要です。 発振強度調整はBFOコイルの4番ピンと6番ピン(GND)間にオシロスコープをつなぎ、発振波形を見ながら行ないます。 具体的にはR4:3.9kΩを加減します。 発振が起こらないときは小さくし、波形が綺麗なサインウエーブ(正弦波)にならない時は大きくします。 ON/OFFしてみて確実な発振が起こる範囲で、小さめの発振状態が良いと思います。

 もう一つ、BFOの調整ではTA2003Pへの注入量の加減が必須です。 あまり強く注入してしまうと、BFO信号によってTA2003Pに強いAGC(自動利得調整)が働き受信感度が抑圧されてしまいます。 CWやSSBの受信に支障がない範囲で小さな注入量にとどめるべきです。 その調整はコンデンサ・C9:3pFで行ないます。 発振に使用するBFOコイルによって発振の強さに違いがあるほか、回路の配置によってもコンデンサ・C9 の最適値は異なってきます。 場合によっては容量をゼロにしても大きすぎることさえあります。 そのような場合はBFO回路を独立させてシールドで覆うなどの対策を要するでしょう。

 しかしあまり難しく考えず、受信状態を聞きながら加減すれば十分だと思います。 注入状態いかんですが、BFOをONするとSメーターがある程度振れるのは普通です。 振り切れるようでは注入量過大ですが、Sメーターが振れるのはやむを得ないと思ってください。 このあたりがラジオ用のICで簡易に作った短波ラジオの限界と言えます。 HAM局用には物足りない部分と言えるでしょう。 それでもCWやSSBの交信は聞こえますから楽しいものです。BFOがなければまったくダメなんですから・・・。

 昔々の通信型受信機:9R4J、9R42Jや9R59(Dナシ)はBFOをONするとゲインが抑圧されてしまうため、AGCの働きを止めると言った受信方法でした。それが普通だったのです。 このラジオのほうがまだマシと言えるかもしれませんね。

ここで使ったBFOコイル用のIFT(白)を差し上げます。必要ならメールください。

 【TA2003P短波ラジオ:IFフィルタ部
 この試作では選択度を決めるフィルタとしてセラミック・フィルタを使いました。 村田製作所のCFU-455Hという古い形式のものです。  同じものは入手困難と思われますが、代替品なら何とかなるでしょう。 もし違う型番の手持ちがあるなら使ってみる価値は十分あります。 455kHz前後のセラミック・フィルタなら使えるものはたくさんあります。 型番にあまりとらわれずある物で試してみましょう。450kHzのセラフィルも使えます。

 使ってみてからわかったのですが、このフィルタ一つだけでは不満がありました。 可能なら2個を重ねて使うべきです。 そうすると選択度も向上しますが、それ以上に通過帯域外の減衰特性が改善されるので「おかしな混信」から逃れることができます。

 あまりにも本格的なIFフィルタは簡易な短波ラジオには馴染みませんが、逆に簡易すぎると不満が起こります。CFU-455Hクラスのフィルタならぜひとも2つ使いたいところです。

 【使用したIFフィルタの特性
 CFU-455Hはこのグラフのいちばん内側のカーブのような特性になっています。 -6dBの通過帯域幅はおおよそ6kHzですから短波放送の受信にはちょうど良い選択度です。

 しかし、問題なのは両脇の裾野の部分です。 赤く囲った部分では通過帯域からみてわずかに35dBくらいしか減衰しません。35dB以上の強度差がある信号は短波帯にはざらに存在します。  したがってその盛り上がった部分に強い局の方が掛かれば当然のように混信が発生します。(ラジオ放送の受信で起こりやすい)

 2段に重ねれば通過帯域外は70dBくらいの減衰量になりますから混信はほとんどわからなくなります。 CFU-455は内部素子数の少ない簡易なフィルタ(4エレくらいでしょうか?)なのでやむを得ません。やはり2つ使うべきだと思いました。 同じセラミックフィルタでも通信機用のもっと高級なものなら一つでも大丈夫です。 別のラジオの例ですがこのフィルタを2つ重ねて使ったところ、おおよそ9R59なみの選択度になりました。 本格的な通信機用IFTを3つ使った受信機に近い選択度が得られます。ラジオとしては十分すぎるほどでした。CFU-455クラスの簡易セラフィルは2つ使うのがベストです。

TA2003Pを使った短波ラジオの調整
 この短波ラジオが十分な性能を発揮するためには調整がとても大切です。 ラジオとしての基本的な動作が確認できたら調整を始めましょう。 省部品にできたICですから調整箇所は限られています。 スーパーヘテロダイン式ラジオに付きものの中間周波トランスの調整はありません。 従ってトラッキング調整のみ行なえば終了です。 短波の1バンドだけのラジオですからごく簡単です。もちろんテストオシレータなどの調整用機器は必要です。中波のラジオと違って放送局を使った調整は現実的ではありません。何とかして調整用機材を準備してください。

 トラッキング調整の概要は以下の通りです。 まず、(1)局発回路(Local Oscillator)を調整します。 それによって受信範囲を決めます。 続いて、(2)局発回路で決まる受信周波数と入力の同調回路(アンテナコイル)がうまく連動するように調整します。

 以上ですべてですが、具体的な作業手順はトランジスタを使った短波ラジオ(←リンク)のところに順を追った説明があります。 ここでは省略しますのでそちらを参照してください。  受信範囲も同じですからほとんど同じ手順で調整を進めることができるでしょう。

                   ☆ ☆

 【TA2003Pで作った短波ラジオの受信ムービー(注:再生すると音が出ます

 

 ムービーはラジオNIKKEI第1プロ:6055kHz(JOZ2)を受信している様子です。アンテナはハーフサイズのG5RVです。 昼間は日経ラジオ(昔は日本短波放送と言った)くらいしか聞こえませんが、日没になると放送バンドにはたくさんの国際放送局がひしめきます。 感度も十分でとてもよく聞こえました。 ダイヤルを3.5MHzや7MHzに合わせBFOをONしたらHAM局の交信も聞こえてきます。ただしメインバリコン一つで同調するのは非常に困難です。 スプレッド・バリコンを追加するなど短波ラジオに向いた装備を充実させたくなります。 毎度書きますが、短波ラジオでは選局しやすいダイヤル機構をどう実現するのか、たいへん重要です。 感度を云々するのも結構ですがダイヤルがイモでは実用性はナシです。 スーパーヘテロダイン式受信機で問題になるイメージ比も十分とは言えませんからプリセレクタを外付けしてやると効果的です。 そこまでやれば立派な短波ラジオになります。

                   ☆

 HAMのこだわりで短波ラジオといえばCWやSSBの受信も・・と欲張りたくなってしまいます。 一般的に出回っているラジオ用のICにその機能はありません。 そうした受信も考慮されていませんからそのまま使ったら不満が残るのは当然でしょう。 幸い本格的な通信型受信機に向いた半導体も入手できますからTA2003Pのような「ラジオ用のIC」に過大な期待を掛けぬ方が良さそうです。 こうしたラジオ用のICは無理して通信型受信機に仕立てるよりも「高性能なラジオ」の方向が正解のようでした。

 TA2003Pはもともと短波受信も可能なICチップです。 「誰でも簡単に」とは言いませんが、ラジオの仕組みをある程度わかっていれば高性能な短波ラジオも実現し易いはずです。 特にAGCの性能などは立派であり、微弱な信号から強力なラジオ局まで破綻なく聞こえるのは流石でした。 このあたりは6石スーパーくらいでは真似できません。 出力側が非同調形式なので完全なものではありませんが、高周波増幅(RFアンプ)が内蔵されているため感度良好な短波ラジオになります。 トランジスタを並べて作った回路のような細部の融通性こそありませんが一定水準の性能は得られ易いです。 ラジオ専用のICを使った短波ラジオはお薦めできそうです。 ではまた。 de JA9TTT/1

(おわり)fm

2018年7月13日金曜日

【回路】Making a DVM with Green LEDs

【回路:緑色LED表示のDVMを作る】
 【高輝度Green LED
 緑の数字表示器といえば蛍光表示管がポピュラーです。明るくて目に優しい色合いなので長く使われてきました。

 しかし蛍光表示管はやっぱり真空管なのです。 フィラメントの加熱が必要ですし十分な輝度を得るには高い電圧を加えなくてはなりません。 あの緑色に未練は残りますがそろそろ交代を考えても良いのではないでしょうか。

  ずいぶん前から発光ダイオード:LEDにもGreenはありましたが、何となく寝ぼけた色合いですし、輝度もだいぶ低かったのでした。 刺激的で目に優しくないと言われつつも赤色のLED表示器が多かったのも仕方ないでしょう。 少しマシなオレンジ色も使われましたが今ひとつでした。

 最近はLEDを使った信号機が増えてきました。 いつも通過するたびに思うのですが、何とも魅力的な「青信号」だと感心していたのです。 あんな色合いの数字表示器があればいいのに・・・と。 それがありました!

                   ☆

 最近手に入れた緑色の数字表示器を使ってみたいと思ったのが出発点です。 周波数カウンタでも良かったのですが、今回はデジタル電圧計を作ることにします。
 単純に数字表示器を光らせるだけでは面白くないでしょう? 4桁の数字表示器ですから時計でもと思ったのですがデジタル電圧計にしました。 その方が実験っぽいですからね。(笑) 例によってお暇ならお付き合いを。

デジタル電圧計のパーツ
 電圧計の製作に使ったICです。 メインのICはMP7138というDVM用のチップです。

 MP7138の入手は困難でしょうから詳しくは書きません。 2重積分型のA/D変換回路とデジタル表示のための回路を内蔵した専用のICです。よく覚えていませんが試作品を頂いたものだったと思います。 類似のICとしてはインターシル(現・Renesas Electronics社)のICL7137があります。 それとだいたい同じような機能を持っていると考えたら良いです。

 表示はダイナミックドライブ形式で外付けのデコーダ・ドライバが必要です。ここではC-MOSのTC4511BPを使っています。 桁ドライブが正論理なのでLEDはカソード・コモン型を使うと簡略になります。 ここで使った4桁のLED表示器:OSL40391-LG(←秋月電子通商にリンク)はGreenのものですが、同じ形状でRedとBlueもあります。 桁ドライブにはTD62003AP(←秋月にリンク)という東芝製を使ってみました。前のBlogでカウンタ用LSIと一緒に使ったNECのμPA81Cとピン接続を含めてほぼ同等です。 もちろん、デジトラを4個使っても同じようにできます。

 MP7138は基準電圧源を内蔵しないため別途用意する必要があります。 メーカーのアプリでは1.2Vのバンドギャップ・リファレンスが使ってあります。 あいにく、1.2Vの基準発生用素子に良い物がなかったのでここではTL431を使うことにしました。 TL431系のICは少々温度係数が大きくて、こうした電圧計の基準には不適当ではないかと思ってきました。 そこで性能を確認した上で使うことにしたのです。詳しくはこのあと試してみます。

 MP7138はプラス5Vの他にマイナスの電源も必要です。 マイナス電源の消費電流はわずかで電圧も安定化しなくて大丈夫ですが必ず用意する必要があります。 メーカーの回路例ではC-MOSインバータを使った負電圧発生回路になっています。ここでは専用のIC:ICL7660CPAを使うことにします。(写真にはありませんが)

 【MP7138 を使ったDVM
 CADを使った図面の話ですが、今まで使ったこともないデバイスで回路図で書こうとするとデバイスエディタを起動して新規登録しなくてはなりません。 そうなると回路図を書き起こすのも面倒くさいのと、同じデバイスはどうせ手に入りませんから新規登録しても意味がありません。 手間を省いてメーカーのアプリケーション・ノートに書き込みした回路図で済ませます。 ここではどんな物かわかれば十分なので参考程度に見てください。

 MP7138自体かなり古いICなので応用例には見たことも聞いたこともないようなICが使われています。 DS8857というのはナショセミ社の7セグメント・デコーダ・ドライバでTTL構造のICです。ただし一般的なSN7447と違ってカソード・コモンのLED用なのです。 持っていませんし手にも入りませんから類似機能のC-MOSの4511BPで代替します。 桁ドライブには同じくナショセミ社のDS75492が使われていますが、こちらはNPN-Trのダーリントン接続が6回路分集積されただけのチップです。ここではTD62003APで代替しました。機能は類似ですがピン接続はもちろん異なります。

 鎖線で囲まれた74C04を使った部分は負電圧の発生回路です。74HCU04で代用可能と思われますが、ここではICL7660CPAという負電圧発生用の専用チップを使います。動作が確実で性能もずっと良好です。 まあデジタル電圧計としての性能には影響はないのですが。

 MP7138は2Vフルスケールと0.2Vフルスケールが選択できます。ここでは2Vフルスケールで作ります。 その場合、必要な基準電圧は1.000Vです。必ず安定している1.000Vを与えなくてはなりません。 回路例では MPS5010という自社製のバンドギャップ・リファレンスを使っています。 もちろん入手難なので代替します。 購入するまでもないと思って手持ちを探したのですが適当なものが見つかりません。 そこですこし温度安定度に心配がありますがTL431を使ってみようと思います。 TL431は2.5Vを発生しますので、1Vになるよう分圧して与えればOKです。

メーカーの推奨回路では珍しいデバイスが使ってありますが、回路を見ても特に難しい部分はないと思います。

 【電圧基準:NJM431L
 1.2Vのバンドギャップ・リファレンスはポピュラーなのでですが手持ちに適当なものはないので新たに購入する必要がありました。

 探していたらTL431系のチップならたくさんあることがわかりました。 ツェナーダイオードなんかたくさん使わないのと同じで、TL431もそうそう使うものではありません。たくさんあっても少々持て余し気味でした。

 基準電圧源としては物足りないのですけれど、まあ実験用には良いかもと思ってデータシートを見ていたら面白いグラフが目にとまりました。

 【NJM431Lの温度特性
 この図はNJM431L(新日本無線製のセカンドソース品)のデータシートに載っていたものです。 横軸は温度、縦軸が電圧になっています。 従ってカーブが水平なものほど電圧が温度変化に対して安定していることになります。

 このグラフは開発評価の際に特定の製造ロットについて代表的な特性をとった結果ではないかと思われます。 従って、一般に流通している現品もまったく同じ傾向があると考えるのは早計ではないかと思うのです。

 しかし、デバイスとしての傾向はこの図の通りなのでしょう。 この図では、端子間のブレークダウン電圧:Vzが2.500V付近のものが最も温度係数が小さく周囲温度の変化に対して端子電圧が安定していることを示しています。

 そうそう旨い按配にVz=2.500VのNJM431Lが見つかるとも思えませんが、たくさんある中には近い電圧のものがあるかもしれません。 実測してみる価値はありそうです。

 【TL431Cがオリジナル
 431系のオリジナルはTI社のTL431です。 手持ちにオリジナルメーカの製品があるなら合わせて調べる必要があるでしょう。

 このTL431Cは許容電力が大きなタイプなのでパッケージは縦長で大きくできています。 ツェナー・ダイオードの代替品として使う際に大きめの電流が流せるようにできているのです。 外形こそ大きいですが内部の半導体チップはあまり違わないサイズと思われます。

 こちらも幾つか手持ちがあったので選別の対象になりそうです。

 【TL431Cの温度特性
 調べてみたらオリジナルメーカのデータ・シートにも同じようなグラフが掲載されていました。 この例でもほぼ2.500VのグラフをみるとNJM431Lと同じような傾向を示すようです。 製造プロセスの違いはあっても等価回路は同じですからね、シリコンであることに違いはありませんし。

 やはりVz=2.500V前後のTL431Cが見つかれば良い結果が期待できるのかもしれません。 探してみましょう。

 今まで見過ごしてきたようなグラフですが改めて見直すと面白いものです。 ただし、このTI社のグラフも特定の製造ロットを調べた例ではないかと思います。 実際に手持ち品が同じような特性を示すとは限りませんよね。 それにそんなに都合よく2.500Vに近いものなど見つかるものなのでしょうか?

 【端子電圧で選別する
 想像しているだけでは本当のことはわかりません。 現物は手元にあるわけですから、実際に測ってみるに限ります。さっそくやってみましょう。

 回路電圧は使用時を考えて+5Vにします。 グラフの特性例では流す電流をIz=10mA と大きめにとっています。 しかしここで使うには10mAは大きすぎるのでIz=1mAで行きたいと思います。 データシートにある幾つかの特性グラフから判断してIz=1mAなら10mAとさして違わないようです。 従ってドロッパ抵抗は2.2kΩを使いました。(写真)

 並列に入れるバイパス・コンデンサは3.3μFにしました。 TL431は0.01〜2.0μFあたりの容量が並列に入ると発振するおそれがあります。 これは特に気をつけなくてはなりません。 とりあえず3.3μFなら安全な範囲です。 使用時には10μFくらい入れておくことにします。

#このような回路で端子間電圧を実測してみることにしました。

 【Vz=2.5V付近が良い
 NJM431LとTL431Cを実測して見たところ、Vz=2.500V付近のものならそれほど苦労せずに見つけられることがわかりました。 5つも測定すれば2.500Vに非常に近いものが見つかります。たくさん探す必要もなく簡単に見つけられました。

 そうそう都合よくVz=2.500VのTL431やNJM431が見つかるとは思ってませんでしたが何でも試してみるものですね。 この例では4mVほど高めですが、2.500Vに十分近い電圧です。 これなら期待できるのではないでしょうか?

 【冷やしてみる
 指先でつまんでみたのですが、体温で温める程度では電圧の変化は見られません。 今の季節ですから、これ以上室温を上げるのは勘弁してほしいところです。

 想像や印象だけで議論していても答えは見つかるものではありません。可能なことなら何でも試してみるべきです。 そこで保冷材を冷凍庫から調達してきました。 出してきた直後なら氷点下20度くらいでしょう。 少し経つと温度も上がると思いますがTL431の熱容量から見たら十分な冷却能力があります。

#保冷材を少々当てた程度では電圧の変化は認められません。当てたままで暫く放置しましょう。

 【冷却後の端子電圧
 保冷材を当てたまま5分くらい経過したら変化が現れました。 100μVほど電圧の降下が認められます。(数字の変化はこのDMMの量子化誤差ではないようです。室温に戻れば電圧も戻りますので)

 電圧を測定したあとで触ってみた感触ですが少なく見ても10度以上の温度低下が生じています。ずいぶん冷たくなっています。 控えめに見て仮に10℃の低下と考えると、-100μVの変化は-40ppmの低下ということになります。従って温度係数は+4ppm/℃くらいと言うことでしょうか。
 これは思っていた以上に良い数字です。 3・1/2桁で2VフルスケールのDVMの最小桁は1mVです。 これは500ppmに相当しますから+4ppm/℃など無視しても良いくらいです。周囲温度が±30℃くらい変化しても変動は目に見えないでしょう。 +4ppm/℃が問題になるのはずっと桁数の多い電圧計です。

 TL431の温度変化に対する端子電圧は300K(=27℃)付近を頂点とした上に凸の二次関数になっています。 従って傾斜は直線的ではありませんので何ppm/℃というのは不適当です。 しかし思いのほか安定しています。 これくらいの性能があるなら3・1/2桁のデジタル電圧計の回路には十分な性能でしょう。 いささか定性的な評価ではありますが、使えるのか使えないのかという判定に於いては「使える」と考えて良いでしょう。

  TL431はツェナ・ダイオードの代用品であって、それほど温度係数は小さく(良く)ないに違いないと思ってきました。もっぱらラフな用途向けだと思ってきたわけです。 しかし先入観に囚われず試してみるものですね。 電圧で選別すれば良いものがあります。 メーカーは保証しないでしょうけど中には「イイもの」があるんですから。(笑)

参考:では、2.500Vから外れた物はどうかと言う疑問もあるでしょう。簡単に実験しています。 2.500Vの物よりも幾分変動は大きいようですが意外に悪くありませんでした。 2.500Vから大幅に外れたような物ではなかったからでしょう。 定性的な評価なので数字は省きますが選別の効果はそれなりにあったと思います。

 【電圧計を作る
 部品の選定が済んだのでさっそくデジタル電圧計を作ってみましょう。 こんな感じになりました。

 面倒なのは表示器まわりの配線です。 ここでは初めからダイナミックドライブ用に作られたLED表示器を使ったので配線はすいぶん簡単にできました。 その副作用で極性表示の回路に決め手がなく、現状ではやむなく別途外付けのLEDで対応しています。 MP7138の極性表示のピンはダイナミックドライブ型の表示器向きにできていないのです。 下3桁は良いとして、極性表示の部分には専用のLED表示器を使うのが前提なのでしょう。 工夫してみたのですがどうもうまく行きません。 まあこのあたりは仕方がない感じです。バラのLED表示器を並べて作ればそれほど苦労もないでしょう。

 グリーンのLED表示器は順方向電圧が高いため電流制限抵抗は小さめにします。 ここでは表示が暗いことを恐れてやや大きめの電流を流すように設計しました。 約20mA/セグメントにしています。 ダイナミックドライブですので、6〜7mAくらいのDC電流で使うのと同じ程度の輝度になるでしょう。

 実際にはこれでは電流が大きすぎたように思います。 周波数カウンタの時と違って桁数が少ないため、LED一つあたりに割り当てられる時間が長いのも原因です。 眩しいくらいの輝度になりました。 実用品にするときは半分以下の電流に減らすべきだと思います。 なにせ現状では直射日光下でも楽々見えるくらい明るいんですから。 緑のLEDは暗いと言うのは昔の話なんですね。

#GreenのLED表示のデジタル電圧計と言うのも良さそうです。

 【MP7138の周辺
 積分コンデンサやオートゼロ用コンデンサ、電荷の保持用コンデンサなどすべて安価なマイラ・コンデンサを使っています。

 ポリプロピレン(PP)コンデンサほか、手持ちにあったフィルム系のコンデンサを色々試してみました。 PPが一番良さそうでしたが3・1/2桁程度のDVM回路なら写真のようなマイラ・コンデンサでも十分そうでした。 積層セラコンは端子間電圧によって容量変化があるのではうまくありませんがフィルム系のコンデンサなら大抵のものが使えそうです。

 変換クロックは10kHzで、内蔵のCR発振器を元に得ています。 無調整ではライン周波数と完全には同期していないようです。ACラインの誘導を除去する性能が幾分良くない感じです。 できたら調整式にしておくと良さそうでした。 理屈の上では2重積分型はAC電圧の誘導には強いのですが、変換サイクルがAC電圧の周波数とうまく合っていないと本来の性能が発揮できません。 表示がばらつく原因になります。 3,000カウントが一回の変換サイクルになります。クロックは10kHzですから、1サンプリングは0.3秒です。(3.3回毎秒)

いくらか改良すべき点もありますが測定値は安定しており十分実用になる性能です。

基準電圧と負電源
 写真のように基準電圧にはTI社のTL431Cを使いました。もちろんJRCのNJM431L(2.5V選別品)でも同じようでした。 どちらでも問題なく十分な性能が得られます。

 こうしたDVM回路ではあまり使用例を見ませんがTL431系のICがうまく使えることがわかりました。 これは今回の収穫です。もっと積極的に使いましょう。 並列のコンデンサを大きめにすることでバンドギャップ・リファレンス固有の広帯域ノイズもあまり気にならない程度にできます。 3・1/2桁のDVMにはまったく支障ありません。

 写真のように負電源:-5Vの発生にはインターシルのICL7660CPAを使いました。外付けの電解コンデンサ、10μFが2つ必要ですがプラス5Vから簡単にマイナス5Vを作ることができます。 秋月電子通商にはTJ7660というHTC製(中華民国:台湾)のセカンドソース品が売られています。同じようにに使えます。 コイルを使ったDC/DCコンバータと比べて電流容量は小さいのですが、こうした用途には十分です。ノイズも比較的小さいのでちょっとした負電圧が欲しい時には使いやすいデバイスです。

Greenは綺麗
  フルスケールの1.999Vを加えて表示しています。 1.999Vを越えると、最上桁の1が点灯するだけで、下3桁はブランキングされます。 正にオーバーレンジしたのか、負にオーバーレンジしているのかは極性表示のLEDを見れればわかります。

 実は見たままに写真撮影するのが難しかったです。 明るすぎるため、かなり絞ってもハレーションから色味が飛んで白っぽく写ってしまうのです。 従って写真で表現するのは難しいのですが、このLEDの色は昔の緑色LEDと違って明るい青緑色です。LED式信号機の青を思い出してもらえば適切でしょうか。非常に美しいです。 蛍光表示管の色合いに近い感じもしますが、もう少し「固い感じ」のする緑色とでも言ったら良いでしょうか。 だいぶ輝度を下げてやり、グリーンのフィルタを掛ければ蛍光表示管に頼っていた用途を十分置き換えられます。 例えば置き時計などにはとても美しいのではないでしょうか? 蛍光表示管好きにもお薦めできると思います。  赤色も嫌いではありませんが緑はやっぱり綺麗ですね。

                  ☆

 緑のLED表示器を切り口にしてデジタル電圧計を扱いました。 こうした電圧計回路は専用LSI化されていますし、今ではパネルメータの完成品が安価に販売されています。 もはや作る機会はないのかも知れませんが作ればそれなりの面白さ(苦労も?)も味わえます。 多レンジのデジタル電圧計ともなれば校正手段が問題になるので自作する人も限られるとは思います。しかし一度は作ってみるのも良いかもしれません。1,000円で買えるくらいのマルチメータに10,000円以上掛かるかも知れませんけれど。(笑)

 オールイン・ワン形式でLED表示のDVMチップ(例えばLCL7107など)では消費電力の関係からチップ自体の温度上昇が大きくて内臓の基準電圧源では安定度が十分得られないことがあるそうです。 そんな時は外から基準電圧を与えれば精度の向上が期待できるでしょう。これはICL7107のアプリケーションノートにも書かれていることです。 3・1/2桁程度のDVMならTL431C・・・ただし要選別ですが・・・も十分使えますので試してみる価値があります。

 せっかくなのでデジタルパネルメータのような完成品に纏めたくなってきました。 コンパクトに作るには手間が掛かりますが、そのあたりをどうするのか旨いアイディアでも浮かんできたら考えてみましょう。 ではまた。 de JA9TTT/1

(おわり)nm