EX

2017年3月28日火曜日

【回路】An OP-Amp Keyer , another one.

【回路:もう一つのOP-Ampを使ったキーヤー】

 【他にもあったOP-Ampキーヤー
 少し前のBlogで長年気になっていたキーヤーの一つとしてOP-Ampを使ったもの(←リンク)があって「この際実験したみました」・・と言うように書きました。

 気になった切っ掛けはCQ hanradio誌の「技術展望」と言うページにありました。 外誌ほかから技術的にめぼしい情報を見付けて簡単に紹介するページでした。 そこに「OP-Ampを使ったキーヤー」として紹介が掲載されたのです。 面白いと思って切り取ってスクラップ・ブックに挟んでおいたのですが、すっかり行方不明でした。

 元の記事が掲載されていたはずのQST誌からそれらしい記事を探し出して実験したのが前回のBlogだった訳です。 ところが、そのQSTの記事は私がCQ hamdadio誌の「技術展望」で見たものとは違うことがわかりました。 ずっと探していたCQ誌の保存記事が見つかったからです。

                   ☆

 前置きが長くなりました。私がCQ hamradio誌の技術展望で見掛けたのは1971年11月号(左図)のQST誌に掲載されたものです。「An Integrated-Circuit QRP Keyer」と言うのが記事のタイトルです。 「技術展望」は要約であって翻訳記事ではないため筆者の製作動機や経緯のようなことは省かれています。しかし読み返してみると回路の動作はきちんと説明されていました。 さらに元記事の主旨も書かれており移動運用に適した省エネなキーヤーだと明記されています。

 切り抜き記事が発見されたことで元の記事がこれであることがわかりました。 原典の記事は回路図を含めたった2ページの簡単なものでした。 これはGimmicks and Gadgetsと言うコーナーの記事だからでしょうね。 使用デバイスは何でも良かった筈で、もちろん「OP-Ampで作る」のが目的ではありません。(笑)

 当時のロジックICはDTLやTTLですから消費電流が大きかったので、それを使ったキーヤーは移動運用向きではなかったのでしょう。 ディスクリートで省エネに作ると言う手はありましたが、簡単ではありません。 そこでOP-ampを工夫してみたら消費電流の少ないキーヤーが旨くできあがったと言うのが記事のポイントのようです。

                  ☆ ☆

 今ではC-MOS ICの発展やローパワーマイコンの登場で意味は薄れたかも知れません。 あえてお薦めするつもりはありませんが、旨くチューニングするとエレクトロニック・キーヤーでありながら個性をもったキーイングができそうです。 自身の好みを符号に反映できる訳です。(笑) そのあたりも試してみたら意外に面白かったので興味が湧いてきたらこの先もご覧下さい。近代化した上で製作に必要な情報は網羅されています。

 【オリジナルの回路図
 2017年の今から数えて46年も前の1971年11月号の記事です。 使用しているOP-Ampはキャン・パッケージのμA741型です。もちろん当時は登場から間のない先進のOP-Ampだった筈です。

 そのμA741を2つ使って短点、長点、スペースをコンデンサと抵抗器:CRの値を使った時定数で実現しています。 μA741はいすれもコンパレータ(電圧比較器)として動作しています。増幅の目的ではありません。

 但し、スピード調整をCRの値を変える方法にすればスピード変更のたびにそれぞれの比率について再調整を要するかも知れません。 それを防ぐため、スピード調整は電圧を変えて行ないます。 各タイミングを作るコンデンサ:Cへ電荷をチャージするための電圧を任意に変えることで可変スピードを実現しています。

 さらに長点は短点の三倍の長さになるよう時定数が概三倍になるように切換えます。 スペースは短点と同じ長さになるよう時定数を揃えてあります。 Cが充電されて閾値に達するまでの時間は電圧で変えられます。 このような方法なら短点、長点、スペースの時間比率は原理上一定に保たれる筈です。

 なお、厳密に言うと必ずしも考えた通りにはならない要因が含まれます。私の試作ではその対策も考えてみました。確かに効果は認められたのですが、あえて対策をとらなくても十分使えそうでした。(条件次第ですが・・・)

 前回のBlogで紹介したOP-Ampを使ったキーヤーでは、始めに短点とスペースが1:1になるように発生させたあと、OP-Ampを使ったFlip-Flop回路を使って2分周してからダイオードによるORゲートで合成して長点を得る方式でした。これはロジックICで作るキーヤーとまったく同じ考え方です。

 それに対して、こちらのキーヤーは短点、長点、スペースの全てをCRの時定数で各々個別に得ている「純アナログ方式」です。

 741型OP-Ampを使いながら、片電源で済ませるためにツェナー・ダイオードを使ったレベルシフト回路が使われています。 設計された当時、まだ片電源動作に適したOP-Ampは登場していなかったのでやむを得なかったのでしょう。 その後、片電源に適したOP-Ampが登場したので今から作るなら幾らか回路の簡略化が図れそうです。

 【私の試作品
 写真は私が試作したものです。 オリジナルの考え方を踏襲しつつ、741型OP-Ampの時代よりも進歩した部品を使うことで回路を簡略化してみました。

 何だか部品数が多くなったように見えるかも知れませんが:
(1)フォトカプラを使ってアイソレーション(絶縁分離)されたキーイング回路
(2)サイドトーンモニタ回路と発音体
・・・などを追加してあります。それらを除けば部品はだいぶ減っています。

 これは、今では4回路入りのOP-Ampがたいへん廉価で販売されておりそれを活かした設計が合理的だからです。 4回路あることでキーヤーとして必要な機能のすべてを含めることができました。 電源電圧の範囲が広くなるなど、性能も改善されています。 消費電流も741型OP-Ampを2個使うよりもだいぶ少なくなっています。 詳細は次項の回路図をご覧下さい。

 一見して部品数が多くて作りにくいように見えますが、ブレッドボードを使った試作なので面積を必要としているためです。 OP-Ampは4回路入りですし他の部品数も僅かなので、ユニバーサル基板に載せるとたいへんコンパクトに製作できます。

 上方の黒くて丸い物は「圧電サウンダー」(←秋月にリンク)と言うものでです。低周波の電圧を与えると「音」が出ます。 ある種のスピーカのような物でモニター音を鳴らすために使っています。 普通のスピーカと違いインピーダンスが高いためトランスなどを介さず直結できて便利です。(ただし、音声や音楽の再生には向きません。あくまでも発音体であって一般的なスピーカとは違います)

 【改良版回路図
 短点、長点、スペースを発生させる回路部分はオリジナルの考え方を踏襲しています。 但し、使用した324型OP-Ampは741型OP-Ampと違ってマイナス電源(GND)側に「残り電圧」が殆ど生じません。 そこでオリジナルの回路にあったようなツェナー・ダイオードを使ったレベルシフト回路は必要としません。 4回路入りのOP-Ampは配線しにくいと感じるなら、2回路入りのLM358Nを二つ使うと良いでしょう。回路定数の変更は不要です。

 また、トランジスタとベース抵抗が集積さている通称「デジトラ」という複合部品を使ったので、見かけの上で抵抗器が6本削減できました。 このあたりがオリジナルが設計された当時よりも便利になったところです。 記事の当時と同じ部品もまだ手に入りるので、そのままそっくり作ることもできますが、省部品で作りやすくする方が良いでしょう。(:デジトラと言うのはデジタル回路で便利なトランジスタの意味でしょうね)

 デジトラはROHM社のDTC144ESAと言うものを使っていますが、これも手持ちの都合です。 少し消費電流は増えますがこのような類似品(←秋月へリンク)でも大丈夫です。 小信号用のデジトラはいずれも安価です。部品屋さんに置いてあれば単価10円程度のものです。 わざわざ買いたくなければ2SC1815GR(2SC2458GRでも良い)と47kΩの抵抗器を2本(等価回路のRaとRbに使う)で代替できます。性能は変わりません。

 長点、短点、スペースの比率を決めるのはコンデンサや抵抗器の値です。従って、幾つかの部品は精度が必要です。 抵抗器は±5%以内の精度が普通なので問題ない筈です。 コンデンサのうち、C1、C2、C3はできればタンタル・コンデンサにします。容量誤差は±10%以内が望まれます。LCRメータで実測して値を揃えれば完璧でしょうね。

 実際には容量の値そのものではなくて比率が重要なので、C1=C2、C3=[C1の2倍]になるようすればOKです。逆に考えればこれらの比率を少しいじってやれば「短かめの短点」とかが実現できる訳です。面白がって色々やってみたら収拾がつかなくなりました。本来の比率をあまり逸脱しない範囲が良さそうです。(笑)

 なお、漏れ電流さえ少なければアルミ電解コンデンサ(普通のケミコン)でも十分使い物になります。テスタで測って抵抗値が500kΩ以上に落ち着くものなら大丈夫です。

 オリジナルにはないサイドトーン発振器を追加しています。 市販の「圧電ブザー」はどれも音程が高すぎるように思います。 好みの音に変えられるよう「低周波発振器」を組み込みました。 弛張発振回路を使った簡単な矩形波発振器です。 発振回路の抵抗器:R11(4.7kΩ)の値を大きくすると低い音になります。 発振波形は矩形波ですから少々ブザーっぽい音がします。w

 キーイング回路には手持ちのフォトカプラ:TLP-521-1(GBランク)を使ってみました。これはごく一般的な物ですが同等品は数10円で手に入ります。 新規に買うなら秋月電子通商にて単価20円で売っている東芝のTLP-785GB(←リンク)が良さそうです。 TLP-521-1の耐圧は50Vなのでブロッキング・バイアス・キーイングにはやや耐圧不足のようです。 しかし幾らかマージンはある筈なので概ね支障無く使えるでしょう。 TLP-785の方なら規格上の耐圧は80Vありますから少し有利です。

 それでも気になるようなら出力トランジスタの耐電圧が100V以上あるフォトカプラあるいは、フォト・モス・リレーに交換します。 または前に扱ったDTL-Keyer(←リンク)のようにリードリレーと言う手もあります。一般的なフォトカプラで間に合わせればフォト・モス・リレーを使うより大幅にコストダウンできます。 但しリグと接続する時には極性に気を付ける必要があります。 

 オリジナルに存在したPNPトランジスタを使った負電圧のキーイング回路・・・ブロッキング・バイアス・キーイング用の回路・・・は省略しました。 フォトカプラならどちらの端子をGND側にしても構いません。極性に合わせた配線さえすれば良く、リグのキーイング回路の極性は問わないからです。あえて負電圧のキーイング回路を設ける意味はありません。

 非常に古い送信機や自作送信機で終段真空管のカソードキーイングをするにはドレイン耐圧が1,000V程度あるパワーMOS-FETが適しています。 回路図のU1bの7番ピンからMOS-FETのゲートをドライブすればOKです。ゲート回りには過電圧保護を付けておきます。 MOS-FETのドレイン・ソース間で終段管のカソードを直接キーイングできます。くれぐれも感電には気をつけましょう。 文章では旨く伝わらなければお問い合わせでもどうぞ。

                   ☆

 作る人は稀かも知れませんが、消費電流も少なく電源電圧の範囲も広いので「実用品」になります。 電源電圧は9Vが標準ですが、図のままで6V程度まで下がっても正常に動作します。 消費電流はパドルを操作しない「待機状態」で2mA以下、「キーイングしている時」が5mA程度です。 消費電流が少ないのであえてAC電源を内蔵するよりも乾電池もしくは充電池でコードレスに使う方法が良さそうです。移動運用のお供にするならもちろん乾電池でしょうね。 自宅のシャックで使うなら小型のACアダプタも良いかも知れません。 もともと低速のデバイスなのでRFの回り込みには強いと思われます。

324型OP-Amp
 改良版を作るために活用したのが324型OP-Ampです。今ではこれよりも進歩したOP-Ampがたくさんあって選択に困るほどです。

 324型も十分古くさいOP-Ampなのですが廃れた訳ではありません。 十分な性能を持っていますし、何と言っても安価なのが有難い汎用パーツです。

 秋月電子通商では何と4個150円でLM324N(←リンク)が売られています。一つ40円もしませんがこのキーヤーには十分すぎる性能です。 各社からセカンドソースがたくさん登場しておりどれでも同じように使えます。 自作好きなら既にパーツボックスに一つや二つ入っていることでしょう。単品買いでも100円くらいで手に入る筈です。

 上記の試作例ではNEC製のμPC451C(通信工業用)を使っていますが、たまたま手持ちがあったまでの話しで一般的なナショセミ(TI社)製のLM324Nで支障ありません。この写真のものと交換してみましたが何も違いません。 仕様書上の動作温度範囲が違うだけで、他はまったく同等です。 真夏の砂漠や冬期の山岳地帯でオンエアする予定ならμPC451Cの方が良いかも知れませんけれど・・・。(笑)

 このOP-Ampに限らず、使ったいずれのパーツも安価なので収納ケースやツマミのような外装部品を上手に調達すれば500円くらいの材料費で十分行けそうです。 ワンコインで作れるキーヤーですね。実用的なキーヤーがいくらで作れるかチャレンジしてみるのも面白いかも知れません。(笑)

                   ☆

OP-Amp. Keyer Type-2のテストムービー
注意:再生すると音が流れます)

video

 キーヤー恒例(?)のテストムービーです。 このキーヤーはサイドトーンモニタ発振器、フォトカプラを使ったキーイング回路など全てを内蔵しています。 従って、これだけの回路で完結できます。 BL-006P型の9V積層乾電池とスイッチ、スピード調整用の可変抵抗器を小箱に組み込めば完成です。 ムービーではリグのキーイングではなくボード上のLEDをキーイングでチカチカさせています。

 意外に実用性がありそうなので、ロジックICやマイコンを使ったキーヤーに飽きた人には面白いかも知れません。 長短点メモリはありませんので超高速キーイングには向きませんがムービーの程度なら支障もなくキーイングを続けられます。

 回路構成上、スクイーズ・キーイングはできませんので写真のようなシングルレバーのパドルに最適です。 なかなか良い感じにキーイングできました。

                 ☆ ☆ ☆

 新しいキーヤーを作ってもっとアクティブにオンエアを楽しもう・・・と言うほどCWでの交信はしていません。 話しの流れとして、ずっと気になってきたキーヤーを次々に試してきた訳です。 これまで扱った他にもカーチス社のキーヤー専用チップ:8044とか彼の有名なWB4VVFのAccu-Keyerなどもありますが、いずれチャンスがあったらと言う事にしましょう。一冊の書物になるほど電信やそれにまつわる機器には奥深いものがあります。深入りしていたらいつまで経っても終わりは見えてきません。

 OP-Ampを使ったキーヤーなど下手物だと思っていました。しかし、よく回路を見れば意外にオーソドックスでした。しかも実現される性能は思った以上に実用的です。 これを本格的に使うことはないかも知れませんが世の中にはこう言う物もあると言う楽しい経験ができたと思います。 三月も終われば新年度が始まります。ちょうど良い区切りですから、色々試してきたエレクトロニック・キーヤーの話題はこのあたりでおしまいにしましょう。 まずは目出たく卒業と言う訳ですね。 ではまた。 de JA9TTT/1

(おわり)nm


参考:Blogger(=このBlogのこと)の仕様変更に伴い、2010年3月より古いBlogでは各ページに貼ってある写真をクリックしても拡大表示されなくなっています。 一括して救済する簡単な方法はないので、必要そうなコンテンツについて順次アップデートで対処する予定です。(いまご覧のページは最新なので支障ありません) なお、リクエスト頂ければ優先して対策を行ないますのでご希望のBlogの年月日をメール等でお知らせ下さい。(管理人:JA9TTT/1)

2017年3月12日日曜日

【部品】AD8307A Log Power-Meter Chip

AD8307Aを使った対数圧縮型パワーメータ
 【QRP-Power Meter
 暫く前からAD8307Aと言うICが売られています。 入力信号の大きさに対して出力の大きさは対数的に変化する、一種のLogアンプのICです。 入力信号は高周波(RF)電圧が想定されています。直流の電流や電圧が対象ではありません。 従って昔からあるようなトランジスタのベース電流:Ibとベース・エミッタ間電圧:Vbeの指数特性を利用した対数アンプとは異なるものです。

 出力は入力されたRF電圧の大きさに対数で(Logで)比例した直流電圧として得られます。 簡単に言えば、出力端子には入力された高周波電圧に従った直流電圧が得られる訳です。その直流電圧は、RF電圧の大きさに比例するのではなく、対数で比例します。

 活用法の一例としてAD8307Aを上手に使ってパワー計を作ると:(1)ごく小さなパワーが高感度で測定できる。(2)大きなパワーでも振り切れにくい。・・・と言った特徴を持ったRF電力の測定器が作れます。

 写真の左側は私がAD8307ANを使って製作したパワーメータです。80dBフルスケールのほか10dB、25dB、50dBフルスケールで測定できるほか、任意の電力レベルでオフセットが掛けられその部分を細かく読めるようになっています。
 また、右のコンパクトなものはJR1ING菊川さん(2008年6月 Silent Key)がAD8307ARを使って製作されたものです。 コンパクトなワンレンジで製作され小型ながら拘りを持った作品です。これは故人の形見として頂いた宝物です。

                   ☆

 AD8307Aを使った製作は一時期かなり流行りましたが最近は見ないようです。ICチップが比較的高価なのと、製作したRFパワー計なりRF電圧計がLog目盛り(デジベル単位)では直感的ではなくて使いにくいからではないでしょうか? しかし、RFや電子回路のベテランでしたらdBの扱いには精通しているでしょうから、直接dBで数値が得られるのはかえってFBだとも言えます。

 最近になって大陸方面から面実装タイプのAD8307A(R)が安価に手に入ったとのことで、テストのご要望がありました。 そこで以前製作した自作品に装着して試してみました。 結論から言いますと「正常に使える」ようです。 かなり安価だったそうですが、FBではないでしょうか。用途は限定されそうですが有効活用されることを期待しています。

 【自作品の中身
 自作測定器の基板を見たからと言ってさして役立つとは思えませんが、このようになっています。(笑) 基板外にレンジスイッチやオフセットのポテンショメータ、指示メータなどが付いています。

 肝心のAD8307Aは基板の左端に実装しています。 500MHzまで性能を発揮させるのでしたら、ICソケットなど使わず直接最短距離で入力コネクタに直結すべきです。 ここではそこまでの周波数特性は追求せず100MHzあたりが目標です。 金メッキされた小型コネクタの裏面にチップ型の終端用抵抗器などが最短距離で実装され周波数特性の劣化を最小限に抑えるようにしています。 AD8307Aを出た信号は単なるDC電圧ですから高周波の配慮は必要ありません。

参考回路図
 まったく回路図がないと寂しいので、便宜的に載せましたが詳細は掲載誌の記事をご覧になって下さい。
 部品定数はもちろんですが、調整方法についても順を追って説明されています。回路図だけがあっても作れるものではないので部品定数は省いています。

 但しこれ単独で製作をお奨めするようなものではありません。 もともと、RF発振器とセットで使い水晶振動子の精密な周波数特性や、(自作)クリスタル・フィルタの特性を観察するために製作したものです。

 スイープ・オシレータやオシロスコープなどとセットで使いますと、縦軸dB目盛りで管面に周波数特性を描かせることができます。 詳細は雑誌記事でご参照下さい。 雑誌のバックナンバーは、古書、図書館、JARL資料室、出版社のコピーサービスを使うなどの購読方法があります。(掲載誌:CQ Hamradio 2006年4月号pp124〜129)

AD8307AN
 AD8307ANの部分を拡大してみました。 拡大して見たからと言って特に意味はありませんが、次の写真を説明する都合で掲載しています。

 AD8307Aは周波数の上昇とともに感度誤差が大きくなって行きますが、カタログスペックによればおおよそ500MHzまで実用になります。

 本格的に性能を発揮させるためには、ICソケットなど使用せず専用基板を起こして50Ωに設計されたストリップラインのパターンに50Ωの終端抵抗とともに直付けすべきでしょう。 そのようにして初めてカタログの性能が実現できます。

AD8307AR
 写真はテストを依頼されたAD8307ARです。これは表面実装タイプです。

 通販で中国から安価に手に入ったのだそうです。 最近はそのようにして電子部品を調達するお方が増えてきました。 しかし、まがい物(フェイク)も多いらしく、高周波用のパワートランジスタではほぼ全滅だったと言うようなお話も聞きました。

 このAD8307Aもかなり安価だったそうです。それだけに「印刷だけの偽物」の可能性も否定できません。 誰かテストして欲しいと言うご要望はごもっともでしょう。

 ここでは、容易に比較テストを行なう目的で変換基板に載せています。 対象物の中身が間違いなくAD8307Aであることを確認できれば良いのでこのようにしました。 10MHzあたりで比較テストを行なうつもりですが、その周波数なら変換基板に実装してもまず問題はないと思います。ICチップの真偽くらいなら正しく判定できるでしょう。

10MHz・0dBmでテスト
 自作のLog Power-MeterにRF信号発生器・レベルジェネレータから0dBm(50Ω)の高周波電力を加えてみました。 周波数は取りあえず10MHzです。 周波数特性を追求しても変換基板への実装ではあまり好結果は望めません。従って周波数特性の追求は程々にしておきます。

 ソケットからAD8307ANを取外し、AD8307AR(被検査品)に載せ換えてメータを読んでみました。 写真のように少しのズレもなく0dBmピッタリを示しました。

 これだけでは不安なので、10dB刻みに信号を変化させてメーターの読みを確認しました。 ローレベルの領域で正しく測定するためには、チップ個々のバラツキを補正するためのオフセット調整が必要です。 従って単純に交換しただけの未調整のままでは誤差が大きくなりました。 しかし、-50dBmくらいまでなら目盛りと良く一致していましたので評価対象のチップは正常に動作していると思って良いでしょう。 それ以下のローレベルでは個別チップごとに調整が必要なので、精度が悪くなっても異常ではありません。

                   ☆

 QRPPerでもせいぜい1mWまででしょうから、このパワー計の単独では高感度すぎます。 QRPerが精密にLow-Powerを測定するには悪くないパワー計かも知れません。但し、そのためには10dBの固定減衰器(アッテネータ)を何個か用意しておく必要があると思います。他に-20dBカプラもあったら便利です。-20dBカプラは容易に自作できます。 校正次第ではありますが、良いアッテネータを手に入れておけば良い精度でQRPppなパワーでオンエアする際の助けになるでしょう。 他にはIF-Ampの出力部に置き、AD8307Aの出力をAGC電圧として取出しIF-Ampの出力がLogで比例するように制御を行なう・・などの考えもありそうです。 まあ、そんな所が思いつく用途ではないかと思います。ではまた。 de JA9TTT/1

(おわり)fm

2017年2月26日日曜日

【回路】Akizuki DDS-OSC

DDS:Akizuki DDSモジュールの挽歌
 【秋月のDDS発振器
 これは有名な秋月電子通商の「DDS発振器」です。多くの自作好きのお方と同じように過去に何台も製作しています。

 一見して周波数設定の部分をジャンパ・プラグ式で製作したので、DIP-SW式と違うように見えるかもしれません。 他にも少し変更した部分があって、あとで説明があります。

 もう既に「中華DDSモジュール」でさえ盛りを過ぎた今頃になって何で「秋月DDS」なのだろうか? 疑問を持たれたかも知れませんね。

 ここに来て製作した理由は2つあります。
(1)理由の一つは、このまま活用しないと勿体ないと思ったからです。このキットは最近買ったものではありません。かなり前に買ったまま死蔵していたのです。活用しなければいずれゴミになります。
(2)二つめの理由は検討している目的にマッチしていそうだからです。今となっては高性能ではありませんが発生周波数を半固定で使うには便利そうなのです。 アキュムレータのビット数も適当です。

                    ☆

 以下、思い付きのニーズからリバイバルさせてみたものです。 既に高性能なDDSモジュールがたくさん登場しています。これを今どき使う必然性はあまりないでしょう。 しかし、この秋月DDSが登場したころを懐かしく思い出しながら、味わいつつ製作したいと思います。 今回は単にキットを組み立てるだけでオシマイです。懐かしさは感じられても何かの役に立つとも思えません。単なる製作記録なのです。(笑)

 【自分で作る必要があった
 秋月のキットには有料の製作サービスが有ったと思います。 しかしDDS発振器が必要なら殆どの人は自分自身で製作したはずです。

 これ単体でも最低限の使い方ができるように考えられています。 基板の端面に並んだDIP-SWで発振周波数のセットができたからです。(実際にはマイコンで制御しないと実用性はあまりないのですが・笑)

 DIP-SWで周波数セットするのは手間が掛かります。 欲しい周波数を決めたら、クロックの周波数とアキュムレータのビット数からセットすべき数値を求めます。 しかもその数値を純2進数でDIP-SWにセットする必要があります。 関数電卓を駆使してセットすべきビット列を求めなくてはならないのでした。

 それでもマイコンのプログラムなしに単独でテストできるのは大きなメリットかも知れません。作ってすぐにテストできるからです。 今回、リバイバルさせてみようと思ったのもそんな特徴からです。 周波数を半固定して組み込み用に使います。そのような時には外付けマイコンなしで済むのは便利です。

 キットではハンダ付けの難しい部品は予め実装済みです。 DDS-ICとR-2R式のDAコンバータ用抵抗アレーは基板にハンダ付けされていました。

 初期のバージョンではクロック発振器が16.777216MHzになっていた記憶があります。 その後、高い周波数が発生できるように67.108864MHzに変更されました。 現在でも後継のキットが発売されていますが、クロック発振器が写真とは異なるタイプに変更されています。プリント基板もそれに合わせたニューバージョンに更新されています。

 【部品はそれほど多くない
 写真に写っている部品がすべてです。 大した部品数ではないので容易に製作できます。

 購入時には周波数設定用のDIP-SWが3つ付属していたような気がします。 しかし何かの製作に流用したらしく欠品していました。

 基本的に付属してきた部品をそのまま使って製作します。 但しキットのままではローパス・フィルタ(LPF)の遮断周波数が低すぎました。 フィルタ部分のみ手持ち部品に置き換えることにします。 また、テストが済んだらクロックの67.108864MHzは外部から与えます。テスト時のみ付属の発振器を使います。

 【DDSの心臓部:Wellpine-DDS
 心臓部のDDS-ICです。 Wellpine社というのは設計会社だったように思います。 製造はどこかの半導体メーカーのはずです。型番から何となく東芝製のようにも見えますが・・・。

 中身はゲートアレーなのではないでしょうか? DDSの論理回路を汎用のゲートアレー上に実現したものと想像しています。

 ピン数が多くハンダ付けが難しいので、写真のように予め右隣のD/A変換用R-2Rラダー抵抗器と一緒に実装済みになっています。 従って残りは普通のリード線型の電子部品をハンダ付けするだけですから作るのは容易です。

旧キットはきれいなクロック
 これはキット付属のクロック発振器です。 消費電流が大きい、周波数の微調整ができない・・・などの欠点はありますが、出力信号そのものは奇麗だったのでDDS発振器の基準クロックとしては支障のないものでした。

 暫く前のBlog(←リンク)に書きましたが、いま手に入る「秋月DDSキット」にこの写真のタイプは付属しません。 写真の物が調達できなくなってから「プログラマブル・水晶発振器」を使ったクロックが付属するようになりました。 特に信号の奇麗さを要求されない用途なら新しいプログラマブル・水晶発振器でも支障はないかも知れません。

 しかしHAM用の送・受信機に使うなら写真の旧クロック発振器の方が遥かに望ましいのです。 そうは言っても手に入らないのですから仕方ありません。もし現在販売されているキットを製作するなら、クロックは前回のBlog(←リンク)のような発振器を作って与えたいところです。

 【組立完成
 写真は秋月DDSモジュールの完成状態です。

 一部に付属にはない部品を使っています。そのため多少見た目が違うかも知れません。

 周波数設定用のジャンパ・プラグは未挿入です。 このあと必要な周波数に合わせて所定の位置に装着します。

 様々に周波数を変化させたいなら外付けマイコンでシリアル・コントロールする方が良いでしょう。 しかし、なかば恒久的に同じ周波数を発生させるのが目的ならジャンパ・プラグのセットで周波数を「プログラミング」する方法が手っ取り早いです。このあたり、どの様に使うのか目的次第でこのキットの扱い方も変わってくるところでしょう。

 【LPFは部品定数変更
 DDSに必須のローパス・フィルタですがキットのままでは約8MHzの遮断周波数になっていました。

 クロック周波数が低い時にはそれが適当ですが、67.108864MHzのクロックで使うには遮断周波数が低すぎて最適とは言えません。

 ここでは遮断周波数:fcが約15MHzになるように変更しています。 具体的にはL1〜L3に0.47μHを使います。C12とC15は220pF、C13とC14は440pF(=220pFのパラで実現)にしました。 これで15MHzあたりまで使えるようになります。

クロックは着脱式
 付属してきたクロック発振器は完成後の基板テストの時だけ使用します。 ハンダ付けしてしまうと取り外すのは厄介です。ここでは「ピンソケット」という部品を使って着脱式にしました。

 テスト時には写真のクロック発振器を装着し動作確認が済んだらクロックを外部から与えるようにします。 なお、外部クロックで動作させる際に追加を要する抵抗器:R20(=100kΩ)は基板の裏面に実装しておきました。この抵抗器は付けたままで支障ありません。外部クロックの与え方次第ですが、この抵抗はなくても良いことが多いはずです。

                   ☆

 ありふれたキットを当たり前のように組み立てただけです。 他のDDS発振器が登場している今となっては少々色あせて見えるかも知れません。 しかし、1990年代の末にこのキットが登場した時のインパクトたるや強烈でした。 PLL発振器では困難だった1Hzや10Hzといった細かいステップで周波数変化が可能な発振器がいとも容易に可能になったからです。 PLLのような自動制御に付きものだった過渡応答のようなものはありません。PLLで細かい周波数ステップを実現するには多大な努力が必要でした。その殆どすべてが一発で解消されたのですから・・・。

 DDS(ダイレクト・デジタル・シンセサイザ)はそれ以前から存在していた技術です。しかし、それはたくさんのICを並べたとても高級な製作でした。 それがキット化されコンパクトで扱い易い形状で発売されたのです。 無銭家にとって6,400円はお手軽とは言えませんが「高度な技術を買う」と考えれば十分納得できるものでした。 だからこそ死蔵せずに活躍の機会を与えてやりたいと思うのです。

 それで、きちんと動作したかって? ずいぶん長い間、退蔵してきたキットでしたが大丈夫でした。 付属してきたクロック発振器の状態でちょうど10MHzが出るようにセットしてみました。 出力は正弦波で、0.7Vppくらい得られました。 肝心の周波数を測定した結果は3.7Hzくらい低くなりました。これは0.4ppmくらいのマイナス誤差です。 クロックの周波数精度は±5ppm程度でしょう。0.4ppmの誤差なら十分スペックに入っています。 これで製作したDDS発振器の動作は正常だと確認できました。 ではまた。 de JA9TTT/1

【コラム:はんだコテ】
製作には2回前のBlogで紹介した「温調式ハンダこて」(←リンク)を使ってみました。細かいパターン部分の作業に付属していたコテ先チップはやや大きめでしたが、概ね支障なくハンダ付けできました。 温度設定は300℃で使いました。焼け過ぎることもなくハンダの乗りも良好です。 但しベタGNDの部分では長めにコテを当てる必要がありました。なかなか快適に作業できましたが、もう少し高めの温度設定でも良さそうです。
(おわり)nm

2017年2月11日土曜日

【回路】67.108864MHz OSC, Adjustable.

回路設計:周波数調整できる67.108864MHzの発振器
ブレッドボードで試作
  あまり手が進まなかったので小ネタの紹介です。今回のテーマは67.108864MHzの水晶発振器・水晶発振回路です。
           ☆

 DDSで精度の高い発振周波数を得たいと言うテーマでクロック発振器を模索しています。 この発振器はその目的のために設計した特殊なものです。作ってみたい人は稀ではないでしょうか? 自家用メモの域を出ない内容ですし地味なテーマなので覗き見ても退屈でしょう。 こんなところで時間を浪費しないでもっと楽しいサイトへジャンプをお奨めします。ジャンプしたらもう帰ってこなくていいんですよ。(笑)

                  ☆ ☆

 67108864と言う数字は2を26乗した値です。 では、なぜこんな周波数が欲しいのかと言えば、DDS発振器の基準クロックに使うと正確な1Hz刻みの発振周波数を得るのが容易になるからです。

 例えば、DDS-ICにAD9834を使うとします。 AD9834のアキュームレータは28ビット長なので、発生できる周波数の刻みはクロック周波数の2の28乗分の1になります。 従って67.108864MHzのクロックを与えると得られる周波数の刻みは0.25Hzになります。クロックさえ正確なら、この0.25Hzに小数点二位以下の端数はまったくありません。 例えば40,000,000倍で10MHzちょうどが得られる訳です。そしてこの10MHzに周波数の端数は付きません。(40,000,000は2進数表記では、0010 0110 0010 0101 1010 0000 0000となる)

 ほとんどの用途では必要周波数に対して1Hz以下の誤差で設定できれば支障はありません。 受信機や送信機で必要とされる周波数精度は厳しく見積もっても誤差±数Hzでしょう。それにSSBでは相手局にゼロインしているのかが問題になるのであって、周波数の絶対精度は問題ではありません。あるいはCWなら各自が好みの音調でダイヤルしているので完全なゼロインなど要求されません。 従って、必ずしもこうした特定の周波数で与える必要はありません。 マイコンのプログラム処理によって容易に誤差1Hz以内の周波数に設定できるからです。あとはその周波数でずっと安定していれば良いのです。

 しかし非常に精密な測定のような用途では設定誤差がまったく含まれない正確な周波数が欲しくなることがあります。 その為にはDDS-ICに与えるクロック周波数は任意の周波数ではダメです。プログラム処理ではごく僅かな誤差が残存してしまい取り除けないからです。 従ってクロックは2のN乗の周波数であって、しかも調整によって必要とする周波数へ合わせ込めなくてはなりません。このようなことから周波数調整が可能な2のN乗周波数の発振器が欲しくなるのです。

 DDS-ICに与える基準クロックなので、2のN乗周波数でもなるべく高い周波数が有利です。AD9834を例にとれば、2^25=33554432あるいは2^26=67108864が適当でしょう。 具体的な周波数としては33.554432MHzまたは67.108864MHzになります。 用途次第ですが、高周波の発生が目的なら2^24=16777216(→16.77216MHz)ではやや低すぎます。そうかと言って、2^27=134217728(→134.217728MHz)ではAD9834が受け付けてくれません。(クロック上限周波数が高いAD9850やAD9851なら大丈夫です)

 【67.108864MHzの発振器
 図は67.108864MHzに調整可能な水晶発振回路です。 水晶発振器ですから大きく周波数を変えることはできません。もちろん目的の67.108864MHzに調整で合わせることはできます。

 ただし、それがずっと維持できるだけの安定度はありません。 一番下の桁は4で40Hzを意味しますが、それは67MHzに対して約0.6ppmにあたります。 いくら調整しても長時間維持することは不可能です。どうしても維持したいなら、恒温槽(オーブン)に入れるなどの対策が不可欠でしょう。

 もしDDSで得る周波数の精度が1ppm程度で良いなら、この67MHzの方も絶対精度は1ppmで良いので幾らか楽になります。 ±67Hz以内の周波数安定度が維持できれば済みます。 まあしかし水晶発振器とは言えども無補償で1ppmの周波数安定度を維持し続けるのは困難と言えます。従って1ppmの精度を求めるなら時々校正しながら使うのが現実的です。

 発振回路、及び逓倍器のいずれにも中華製のRF用トランジスタ:S9018Hを使いました。 国産のトランジスタでも支障ありません。 67MHzは大して高い周波数ではありませんが一応VHF帯です。 ここで使うトランジスタはft=300MHz以上の小信号用なら何でも大丈夫です。 しかし2SC1815のような汎用トランジスタは不適当です。  S9018Hは「秋葉原価格@¥10-」くらいのチープなRF用トランジスタです。でも、ft>800MHzですから、このくらいの周波数ならとても快適に動作してくれます。(中華トランジスタ:S9018HのShopping Report ←リンク) 写真のブレッドボード試作例では発振部のQ1に2SC2668Yを使っていますが、S9018Hでまったく支障ありません。足ピンの並びが異なるので気をつけます。

 2逓倍回路はPush-Push形式にしました。トランジスタ1石の逓倍回路でも周波数の2逓倍は可能ですが基本波の通り抜けが多いのが欠点です。 従って1石式でやるなら後続のフィルタはしっかりしたものが必要です。 Push-Push形式は基本波の通り抜けがずっと少ないので後続のフィルタが簡単になります。 安価なトランジスタを1つ追加するだけで、スプリアスの除去にたいへん効果があります。 なお、回路図のようにダイナミック・バランスがとれるようにして一段と不要成分の漏洩を低減するようにしました。

 【出力周波数
 出力周波数です。 この例ではユニバーサル・カウンタで測定しています。もちろん普通の周波数カウンタでOKです。 トリマ・コンデンサ:C6で周波数調整します。 但し、発振トランジスタ:Q1のコレクタ側の同調状態によっても幾らか発振周波数が変化します。 もしC6だけでうまく合わせ込めない時にはC4も微調整してみます。

 この状態で暫く様子を見ていましたが、10Hzの桁あたりが漂動しているようでした。 従って常に67.108864MHzちょうどが維持できる訳ではありません。 何の温度補償もしていない水晶発振器としてはごく普通の周波数安定度でしょう。(こんな多桁で見るから変動が多いように感じるのですが)

 【ダイナミック・バランスの調整前
 2逓倍器のダイナミック・バランス調整の効果を見てみましょう。 写真は調整前の状態です。 出力端子で観測しています。

 写真のように一つおきに波形の振幅が変化しています。 これは、逓倍回路のトランジスタ、Q2とQ3の特性が完全に一致していなかったり、トランジスタのベースに信号を与えるトランス:T1の2次側巻線の2つが良く揃っていない・・・などの影響があるからです。

 ゼロ・バイアスのC級増幅なので、Q2とQ3は交互に動作しており各々のコレクタ出力は合成されて出力に現れます。 各トランジスタのドライブ状態や増幅度に違いがあって一つおきに山の高さが異なっているのです。 このままの状態では基本波の通り抜けや、高調波成分は多くなっています。

ダイナミック・バランス調整後
 Q2とQ3のエミッタ間に入っている可変抵抗器:VR1を調整すると図のように山の高さが揃ったきれいな波形になります。 観測場所は同じく出力端子です。

 よく見るとまだ完全に同じにはなっていませんが、上記の状態よりも明らかに改善されたことがわかります。 この程度ならDDSのクロック用として支障ありません。 用途によっては、よりピュアな信号が欲しくなるかもしれません。それにはもう1段同調回路を加えます。

 Push-Push形式の2逓倍器は入力側のトランス製作が少し面倒ですが、それ以外は特に厄介な部分はありません。 スプリアスを抑えつつ、効率良く周波数の2逓倍が可能なので以前から好んで使っています。 逓倍器としてパワーゲインも大きいので、逓倍を重ねるような用途にも適しています。 なお、奇数次の逓倍、例えば3逓倍・・・したいときはPush-Pull型式にすると偶数次の高調波を抑制できるため有利です。ご参考まで。

                 ☆ ☆ ☆

 複雑なシステムもシンプルな回路の組み合わせです。 ごく基本的な要素回路ですが、テストしてデータをメモっておけば応用するときの安心感はずっと違います。 それぞれの回路にはクセのような物があって、それを知らないと後で問題になることがあります。 この発振+逓倍回路にも幾らかクセがありましたが試作したことで要点は掴めました。 安心感を持ってこの先の活用に進めます。

 以前、秋月電子通商で販売されていた67.108864MHzの発振器をDDS-ICのクロックに使ったことがありました。 電源を与えれば目的周波数の信号が得られるのは便利でしたが、周波数の微調整ができないのが欠点でした。少々精密な用途になるとそれが支障になったのです。 モジュールに加える電源電圧を変えると幾らか発振周波数が変化します。 その性質を利用して「周波数の微調整」を行なう例も見掛けました。  ほかに適当な代替パーツもなかったので、やむなく周波数誤差はソフトウエア的に補正する方向へ進みました。 しかしそのようなソフト処理では済まないことがあります。 そんな時は普通の方法で周波数調整できる発振器にニーズがあります。 さらに消費電流の削減は主目的ではありませんが既成の発振器よりも電源電流が少ないのも一つのメリットになりそうです。 では、また。 de JA9TTT/1


(おわり)fm

2017年1月28日土曜日

【その他】Shopping Report 2017, part 1

【2017買い物レポート:Low price Soldering kit
 【安価なハンダ付けキット
 中国製はんだ付けキットの購入レポートです。

 最近のamazonを見ていると、安価な中華製グッズが多数販売されています。 品目は従来からあったようなIT機器や家電品に限らず、半導体やCRのような電子パーツまで、さらに工作用ツールなど非常に幅広くなってきました。

 かなり怪しそうな商品を販売する業者もあって、悪い評価が重なるとアカウントを閉じて新たに別の名で商売を始めていると言ったウワサも耳にします。

 amazonですから変な商品に引っ掛かっても最終的にお金は取り戻せるのかも知れませんが掛かった手間や時間は取り返せないので慎重さも必要でしょう。 しかし非常に安価なら「ダメもと」で試してみるのもスリルがあって楽しいものです。 もし使い物にならなかったら深追いはせず半ば「あきらめる」つもりで怪しげなお買い物を楽しんでいます。(笑)

 写真は1,599円で販売されていた「ハンダ付けキット」です。 これに限らずACコード途中にスイッチが付いたタイプや、付属品の種類や数が違うキットなどたくさんの出品があります。 ただし良く見るとはんだコテ本体はどれも類似なので、あとは付属品やお値段で選んでみるのも良いでしょう。

 この1,599円のキットは(1)温度調節付きはんだコテ本体、(2)交換用コテ先チップ5個、(3)やに入りハンダ少量、(4)簡易こて台・・・・がセットになっています。 この(3)のヤニ入りハンダは錫60%-鉛40%なので「鉛フリー」ではありません。 しかし一般の電子工作にはその方が好都合だと思います。 メーカーは規制があるのでやむなく使っていますが鉛フリーは確実なはんだ付けが難しいため趣味の電子工作には不適当です。なお(3)の「はんだ」はお試し用ですし(4)のコテ台は昔の蚊取り線香立てのような構造の完全なオマケの品なので期待しない方が良いです。要するにはんだコテと交換用コテ先チップのセット販売なのです。w

 はんだコテだけでもきちんとした日本メーカー製なら5,000円以上する筈です。 それが色々付いて1,599円なのですから本当に使い物になるのか怪しそうです。 以下、評価結果を交えてご紹介したいと思います。 最初からBlogの「ネタ」の為に買ってみたのではありませんが、はんだコテに困ってもいないので半分は「ネタ」みたいなものです。 以下、もし良かったらご覧下さい。

 【温度調節付き
 分解してみれば仕組みもわかるので、調子でも悪くなったらバラしてみましょう。 しかし、評価前に分解するのも何ですから、そのままテストしてみましょう。

 ダイヤルは200℃〜450℃の目盛りがあります。 ツマミを回してみますと単なるVRではないようです。 感触からステップ状に設定できるようです。

 温度調節できると言うのがこのはんだコテのポイントでしょう。 従来型の無制御のはんだコテは連続して作業している時は良いのですが暫く手を休めて放置すると過熱してしまいました。 そのため焼け過ぎてこて先チップの酸化が進んで付きが悪くなる、更には細いコテ先なら熱で曲がってくるなどの問題があったのです。 そうかと言ってワット数の小さなコテでは少し熱容量の大きな部品にハンダ付けしようとすれば温度が下がってハンダが溶けてくれませんでした。 その点、温度調節付きのコテなら焼け過ぎが防げるほか、大きな部品のハンダ付けで温度が下がれば加熱量が増えてコテ先の温度を維持しようとするため使い勝手は優れています。

#安価なコレは本当に広範囲の温度調節ができるのでしょうか?

予備のコテ先チップ
 元から付いているコテ先チップは、鉄メッキされた耐腐食型の耐久コテ先です。 従って、大昔のように付きが悪くなったらヤスリで表面を削って磨く・・・と言うような作業は必要ありません。 むしろヤスリ掛けなどしたらコテ先を一発でダメにしてしまいます。 はんだコテ用の濡れたスポンジなどきちんとしたコテ先クリーナを使ってきれいに保てば常に快適なハンダ付けが続けられます。

 しかし、しばらく使っていると少しずつ酸化してハンダの乗りが悪くなってきます。減りにくいとは言え幾らか摩耗もあるのでいずれ交換が必要になります。 良くハンダ付け作業をするのなら予備のコテ先チップは用意しておきたいものです。
 このキットには5種類の交換用チップが付いていました。 このうち、普通の電子回路のハンダ付けで使えそうなコテ先形状は2〜3種類のように思います。 それでも予備があるのは良いことで、はんだの溶けが悪くなった時に慌てずに済みます。

 amazonで売っているハンダ付けキットには交換用コテ先チップが10個も付いてたものまであって様々です。 使い易いコテ先形状の替えが1〜2個あれば十分なので沢山はいらないと思います。 良さそうな形状の交換用コテ先が数個付いていれば十分でしょう。

 交換は簡単に出来ます。 冷えている時にヒーター部分を覆っている金属スリーブ部分の手元側にあるリングを回すとコテ先が外れます。内部のセラミックヒータを損傷しないように気をつけてコテ先チップを交換します。 なお、このキットには付属しませんが交換用ヒータも安価に売っていました。 しかしヒータが切れるほど使えば丸ごと新品を買った方が良いかも知れません。

コテ先温度の実測特性
 怪しいと思っているだけでは非科学的ですから、実際に測定してみましょう。 コテ先に温度センサの「熱電対(ねつでんつい)」を取り付けて温度を測定してみました。 左図はその実測結果です。 横軸が時間で縦軸が温度になっていて、こて本体のダイヤルで温度設定してから安定するまでの時間を追った経過がわかるようになっています。

 できるだけ小型の熱電対ということでSUS保護管入りでφ1.4mmのK型熱電対(=クロメル-アルメル:CA型)を使いました。 コテの先端部分に錫メッキ銅線を数回巻いて固定しています。 幾らか誤差はありそうですが熱容量はそれほど変化しません。極端に温度がずれることもないでしょう。 温度表示器にはadvantest製のデジタルマルチメータ:R6341Bを使いました。

 200℃の設定から実験を始めました。 通電から約2分で200℃を超えるのでそろそろハンダ付け可能になります。 その後もゆっくり上昇して10分ほどで安定状態になりました。 コテ先温度は80℃くらい設定よりも高くなりました。 誤差が大きすぎますが、実際のところコテ先が200℃ではハンダ付け作業には低すぎます。 はんだが溶けないようでは困るので意図的に高くなるようにしてあるのかも知れません。
 さらに300℃に設定してみました。設定よりも30℃くらい高くなりましたが、200℃の時よりも誤差は少なくなっています。 その後250℃に設定温度を下げてみました。 まだ20℃程度高いところで安定しますが、まあまあと言った感じでしょうか? 再び200℃の設定にしてみましたが最初の設定のように約270℃あたりで安定しました。取りあえず温度設定の再現性はあるようです。

参考温度の「自動制御」は行なっていない可能性があります。 要するにダイヤルで通電電流の加減が出来るだけで、コテの温度をフィードバックする温度の自動制御などしてはいない可能性があるのです。 安価ですから単なる「可変電力型のはんだコテ」なのかも知れません。(その可能性は否定できません・笑)
==>自身で検証はしていませんが、他の評価者によれば温度が収束するに伴い消費電流が減少する特性を示すそうです。そうであれば温度の自動制御が働いていることになるでしょう。(温度が高くなるとセラミックヒータの抵抗値が大きくなるので、そのように見えているだけかも・・・)

 左のグラフにはありませんが、450℃に設定したところ448℃前後で安定しました。設定温度が高い方で誤差が小さくなる傾向にありました。(注1) 逆に、200℃と言うのは目盛りに数字はあっても設定はできないようでした。 だいたい250℃以上でないと温度設定は効かないようです。

 以上、時間対温度の関係を見ると、どこかの温度に収束するのでコテ先の温度は制御されているように見えます。 少々誤差の大きな温度制御ですが、それなりに機能しているような感じです。 まずは「温度調節機能付き」のはんだコテと言えるでしょう。

注1:450℃の設定で使うのはお奨めできません。 測定の為のごく短時間でさえ何となくコゲ臭くなってきました。 そのまま通電しているとゴムや樹脂の部分が変形しそうです。どうやら300℃以下の設定で使う方が良さそうでした。

                   ☆

 はんだが溶けなければクレームにもなるでしょう。 しかし温度を測ってみる人はまずいません。 ですから製品個々に温度調整などしていないでしょうし簡単な検査さえも省いているかも知れません。 何しろ通電した痕跡さえもありませんから・・・。

 正常な品でもコテ先の温度には個体差(ばらつき)がずいぶんありそうです。 ここで示したグラフは私が購入した品の特性です。購入したどれもが同じになるとは限りません。取りあえず参考程度に見ておいてください。

 他の購入者のコメントによれば熱でプラスチック部分が変形したとか、中から火花が散ったと言うような物騒な事例までありました。逆に200℃の設定では温度が低くてはんだが溶けないと言うレポートもあります。 ただ、そうした異常さえなければ実用性は十分あります。耐久性などは未知数ですが「アマチュア用」として使えそうです。

 安心感を求めたり高級な性能を望むなら国産品に相応の費用を払うべきでしょうね。 チープな1,599円ハンダ付けキットを同列に並べてダメ出しをしても意味はありません。 初めから満足できそうもないならこうしたヤスモノに手は出さないことです。 しかし価格からみたらコレはこれで十分使えます。私は250℃の所にダイヤルをセットして使おうと思います。 下手な温調ナシのはんだコテよりずっとマシですからね。(笑) ではまた。 de JA9TTT/1

(おわり)nm

ご注意:このBlogはアフェリエイトBlogではありません。電子工作を楽しむための情報を提供していますが特定の商品やショップをお奨めする意図はありません。公開している商品情報は単なる参考です。お買い物は貴方ご自身の判断と責任でお願いします。

2017年1月12日木曜日

【回路】An OP-Amp Electronic Keyer

回路:OP-Ampを使ったキーヤー
年末はここまでで
 2017年も明けて、もう10日以上が過ぎてしまいました。そろそろお正月気分も抜けて何時もの毎日が帰ってきました。

 年末はいつもと違う行事も多く、じっくり落ち着いて何かに取り組むことも出来ません。 何となく気ぜわしくてし、暮れに手がけたものの途中まででオシマイになりました。 見ていた回路図がわかり難く手が進まなくなったことも停滞の原因です。

 12月始めにはDTL-ICを使ったキーヤー(=エレキー)のリベンジも果たせたし、古い古いロジックICを蘇らせることもできました。 私はキーヤー・マニアではないのですが、前々から気になっていたテストを進めて行き、残すテーマは僅かになってきました。

 同じく気になっていたキーヤーの一つにOP-Ampを使ったものがあります。 JA-CQ誌で見掛けたはずです。 ロジックICではない所に面白みを感じたのでしょう、妙に印象に残りました。 今回はアナログICを使う珍しいキーヤーを扱うことにします。

写真はブレッドボードと、ブレッドボード専用のリサイクル部品入れ、それとジャンパー線セットです。 写真の他にフレキシブル・ワイヤのジャンパー線セットがあって、効率的なブレッドボード試作に役立っています。思い立ったらすぐに実験開始できます。

                   ☆

 記憶を辿って行くと様々なことが思い浮かんでくるものです。 前回Blogのキーヤー繋がりで、前々から気になっていたOP-Amp Keyerをテストします。 キーヤーとして特にこれと言ったメリットはないのですがもしも興味を感じたようならお付合いください。 それらしく動作することに新鮮さを感じるかもしれません。(テスト動画付き)

OP-Ampでキーヤーを
 このキーヤーを知ったのはJA-CQ誌の『技術展望』だったと思います。 インターネット以前の時代にあって『技術展望』はHAMにまつわる海外情報の貴重な情報源でした。 但し簡単なコラム記事なので要約と一部の回路図のみが載っているだけでした。
 珍しいキーヤーなので興味を覚えたものの、要約から詳細はわからずそのままになりました。 その記事の切り抜きを保管していた筈ですが、この機会に探してみたのですが見付けることが出来ませんでした。

 暫く後に古いQST誌のコピーが手に入って詳細を知ることが出来ました。 DTL-ICのキーヤーも済んだことから、この際気になっていたOP-Ampを使うキーヤーにも着手してみました。

 キーヤーと言えば論理回路で実現するのが当たり前のようになっています。 そう考えればTTLやC-MOSと言ったデジタルICを使うのが自然です。 マイコンもデジタルICの一種ですし。
 OP-Ampを使うこの記事(QST誌1972年10月号pp40~44)にはコスト的なメリットが謳われています。 デジタルICは既に登場していましたが、アマチュアにとって案外高価だったのかも知れません。 OP-Ampだってまだそんなに安価だったとも思えません。 しかしMC1437Lと言うモトローラ製のDual OP-Amp一つで作れます。 意外にお手軽だったのかもしれません。 そんな時代を感じさせる記事です。 なお、筆者はオーストラリアの人(VK5NO)なのでVKの事情を反映していたのでしょうか。

コラム 米国におけるICのお値段』
同時期・1972年頃のQST誌によればTTL-ICのSN7400が$0.21-、709型OP-Ampは$0.39-でセールスされています。 どのICも米国ではもう十分こなれた価格になっていたようです。 実際にはOP-AmpでKeyerを作っても価格的な優位性はなかったでしょう。 追試記事が存在しないのもこれと言ったメリットがなかったからかもしれません。その頃は$1-=¥360-とあって、当時のJAではICはまだ高価でした。国産のIC
出回り始めたばかりでした。

OAKEYのオリジナル回路図
 主要部分の回路図です。 JA-CQ誌に掲載されていた回路もこれと同じだったように思うのですが、切り抜いて保存しておいた筈の『技術展望』の記事は見付けられませんでした。

 簡単な説明です。 図左側のOP-AmpでDuty比が50%の矩形波発振を行ないます。 その出力を取出すことで短点が連続します。 パドルによる制御回路があって複雑ですが、回路その物はOP-Ampを使った弛張発振回路です。

 長点を発生させるには、その短点出力で図右側のOP-Ampで構成された双安定回路・・・Flip-Flop回路をトリガします。RS Flip-Flopと等価で、CRによる微分回路でトリガを掛けます。 この長点用の双安定回路は短点の二倍の長さの矩形波を出力します。 その二倍の長さの出力と短点一つ分をダイオードを使った出力部のORゲート回路で合成することで長点を生成します。長点はちょうど短点3つ分の長さになる訳です。 同時に短点と同じ長さのスペースもできます。

 OP-Ampは論理回路専用の素子ではありません。 そのため双安定回路の実現には苦心の跡が見られます。 またこの図のままでは、キーイング出力としては不完全なのでリレードライバなどの出力回路を付加する必要があります。

OP-Ampキーヤーの製作回路図
 キーヤーとして完全な回路になるよう出力のリレードライバまで含めて書いてあります。記事にある回路例よりもこちらの方が確実だと思います。 また、上記の回路図では負論理出力でしたが、ドライバ回路の都合から正論理の出力になるようにしています。 回路の動作そのものは上記の回路図と同じです。

 記事にあるMC1437Lと言うOP-Ampはポピュラーではありません。今どき入手は困難でしょうから迷わず置き換えを行ないます。 黎明期のOP-Ampと言えばFairchild社が開発した709型がたいへん有名です。 MC1437Lはその709型を2個集積したものと等価です。 従って、709型のOP-Ampを2個使えばまったく同じです。 ここではTI社のSN72709Nと言う709型の互換品(セカンドソース)を使いました。

 709型OP-AmpにはCanおよびDIPパッケージ品があって何れも8ピンが普通です。 14ピン型は未使用ピンが多くて合理的とは言えませんが、今さら709型OP-Ampなど購入したくもないので手持ちを活用しました。 8ピン型を使うなら回路図のピン番号を振り替える必要があります。まあ、真似て作る人などいないとは思いますが。w

 リレードライバは2SC1815GRのようなNPN型の汎用トランジスタを使います。 ダイオードはシリコンの小信号用なら何でも良いです。例えば1S2076Aのほか1S1588や1N4148などがあります。 リレーは前のBlogのようなリードリレーでも良いしPhoto-MOS Relayなどお好みで。 ドライバのトランジスタでリグを直接キーイングすることも出来ます。

参考:709型OP-Ampは現在でも入手可能です。同等品やセカンドソースもたくさん存在しました。但し生産中止から時間が経過したため珍しい存在になりつつあって価格は上昇しています。 従って他の形式のキーヤーの製作をお奨めします。

歴史に残る"709型"OP-Amp
 既に709型OP-Ampの現物など見たこともない人が多いでしょう。 まして14ピン型など・・・。 この14ピンのパッケージにOP-Amp回路がたった一つだけ入っています。

 デート・コードを見ると1970年11月製のようですから非常に古いものでした。 その当時購入した訳ではなく、ずっと後に何かのジャンク部品と一緒に手に入れたものでしょう。 2017年の今から数えて46年も前のOP-Ampが正常に動作するのか少々怪しく思いましたが杞憂だったようです。 工業用の標準的なパーツとして確立していたのですから、その当時から十分な信頼性を有していたのでしょう。 劣化も見られずきちんと働いてくれました。

OP-Amp keyerの全景
 最初の写真とは異なる部品配置になっています。 回路図を書き直した関係もあり、わかり易いように部品配置を整理してみました。 解体して最初から組み立て直しています。

 以前、RTL-ICを使ったMicro TO-Keyer(←リンク)を作りました。 そのとき、マイクロではないオリジナルのTO-Keyerの動作についてに触れたことがありました。 このOP-Amp KeyerはそのTO-Keyerの動作に類似しています。

 真空管回路ではありませんから回路形式はまるで違いますが、動作の様子には類似性があります。 半導体版のTO-KeyerとしてはRTL-ICを使ったものよりも、こちらの方がMicro TO-Keyerを名乗るのに相応しいように感じます。

短点&スペース生成回路
 こちらが短点とスペースを発生させる弛張発振回路の部分です。この部分で短点発生とクロックを兼ねるので、クロック発振回路は必要ありません。
 Duty比=ほぼ50%の矩形波を発生します。 50%が崩れると長短点とスペースの比が奇麗な1:1や1:3になった符号の発生ができなくなります。

 出力を正帰還してヒステリシスを持たせ矩形波を発振する回路です。 OP-Ampを使ってはいますが、増幅回路ではなくてコンパレータ回路(電圧比較器)として使います。 709型OP-Ampは位相補償を内蔵しないので図のようなコンパレータとして使うと結構高速です。 奇麗な矩形波が得られています。 もっとも、数10Hzの矩形波ではどんなOP-Ampでも同じようかもしれませんけれど。

長点発生フリップ・フロップ
 長点を作るためには短点の二倍の周期の矩形波を作る必要があります。 そのため、OP-Ampを使った双安定回路(Flip-Flop)を構成し、短点信号で旨く交互にトリガが掛かるようにして二分周器を実現しています。

 この『旨くトリガを掛ける』という部分に苦労があったようです。 普通のOP-Ampには/Q出力(反転出力)はありません。 709型OP-Ampの出力側位相補償端子から正規の出力端子と反対の『反転出力』が取出せることを利用して旨くトリガを掛けているのです。 従って、このOP-Amp Keyerは709型もしくは等価な回路構成になったOP-Ampでないと旨く行きません。 幾らか回路を追加すれば他のOP-Ampでも可能そうですがもう時間切れです。 今さら真剣に置き換えを検討するほどの価値もないでしょう。

電源回路例
 片電源動作にすることもできます。 しかし、小さな電源トランスと左図のような整流平滑回路を作って済ませるのが良いでしょう。電源電圧は安定化しなくても大丈夫です。

 乾電池でも良いのですが、リレーを使うと006P型乾電池では動作時間が短くて不経済です。 ちなみに、±8Vで動作させた場合の回路電流は以下の通りです。 +8V側が待機時に約6.9mA、キーイング時が約7.8mAです。 -8V側は待機時が約16.5mA、キーイング時では少し減って約14.5mAでした。

 Relayは動作させていませんので、動作させた時はその分だけ+8V側の電流が増えます。 乾電池では動作時間が短いので6〜9V程度の小型電源トランスを入手し図のような電源を組み込んで使います。

 電源回路はオマケとして追記しておきました。おそらくこんなKeyerを作る人もいないでしょう。 それに興味から製作してみるようなお方なら電源の手当くらい百も承知でしょう。いささか蛇足だったかもしれませんね。hi

                   ☆

OP-Amp Keyerのテストムービー
注意:音が出ます)
video
 
 キーヤー恒例のムービーです。(笑) 今回は圧電ブザーのキーイングではなく、実際にRigでキーイングしてみました。 キーヤー側とリグ側のGNDが分離されなくても良ければ、リレーなどを使わなくてもキーイングできます。

 最近のRigのキーイング端子は電圧+10V程度で数mAの電流をON/OFFできれば良いように出来ています。 そのような場合はリレードライバのトランジスタで直接キーイングできます。 ドライバ・トランジスタを『オープン・コレクタ出力』にして取出しておけばOKです。 またブロッキング・バイアス・キーイングの場合はコレクタ耐圧:Vceが-100VくらいあるPNPトランジスタを使う方法があります。 但しそのようなニーズがあるのは非常に古いトランシーバ・・・例えばTS-510/511やTS-530/830あたりとFTDX-400/401やFT-101〜101Eのような真空管が使ってあるような年代もの・・・くらいでしょうね。(調べてみたら意外に多い)

                 ☆ ☆ ☆

 この所ずっと以前から興味があったキーヤー回路を試しています。 古いものばかりですが、面白い例が多かったように思います。今のように『定番』が確立する以前の時代だったからでしょう。 OP-Ampを使うKeyerなど「ゲテモノ」かも知れませんが回路動作そのものを見ればKeyerの基本に則った動きになっていることがわかります。 回路形式や部品に物珍しさを感じますが、エレクロニック・キーヤーの動きそのものは十分に確立されていたと考えて良いでしょう。 あとはその実現手段の違いだったに過ぎないのです。

 昔々から目についた回路をメモったり、記事をスクラップしてきました。 いずれも何となく気になる回路ばかりですが試す機会もないまま深く埋もれています。 『部品の発掘』と同じように少しずつでも発掘して試してみたいものです。 では。 de JA9TTT/1

備考:日本語の「エレキー」は現在ではElectric Keyerの省略形と考えられます。 但し原典のOAKEY記事ではElectronic Keyerとなっており、(当時は)その呼び方が普通であったようです。それに伴い、この回のBlogに限ってElectronic Keyer / エレクトロニック・キーヤーと呼ぶことにしました。エレクトリックあるいはエレクトロニックのどちらも使われており、いずれでも誤りではないようです。以上は私見であって普遍的なものではありません。

(終わり)fm

2016年12月29日木曜日

【回路】DTL-IC Electric Keyer, nostalgic.

【DTL-ICを使ったキーヤー】
 【パーツ沼の底深く
 電子部品の話しです。 長いことエレキと付き合っていると、パーツ沼・・・部品箱とも言う・・・の奥底にはたくさんの過去が沈んでいます。 この沼は底があるようでも意外に底ナシで何でも飲み込む困った存在でした。 妖精も住んでいないようで金の斧を持って登場することもありません。w

 まだ若かった頃なら『何時か使うから』と言う尤もらしい理由で構わず沼に放り込んだものでした。 それから月日も流れ、すでに人生の折り返し点を過ぎればぼちぼち「沼さらい」で身ぎれいにしておかないと家族の迷惑が目に浮かぶようになってきました。 そう思って手を付け始めると思いがけない『発見』があって、それがまたまた寄り道の始まりになるのです。

 少し前になりますが、RTL-ICと言う黎明期のロジックICを使ったキーヤーを製作したことがあります。 そのときDTL-ICの存在にも気付き、いずれ此れでも遊んで見たいと思いつつ今になってしまいました。(キーヤー:エレキーとも言うがたぶん日本だけのよう)

 ずいぶん古い話しになります。ジャンクの基板から調達したDTL-ICでキーヤーを作ったことがありました。 そのとき参照した回路図にはDTLではなくTTL-ICが使われていたのです。 DTL-ICとTTL-ICは混在でき、しかもキーヤーのような超低速な論理回路なら殆ど同じように動く筈です。 但し同じ論理機能を持ったチップがなかったので生半可な知識に基づく代替を図ったのが間違いのもとでした。 その結果、もちろん旨く動作してくれません。 論理回路は冷徹ですから『性能は悪いが取りあえず動く・・』と言うようなアナログチックな寛容さはないのです。

参考:写真は発掘された超古いNEC日本電気製のDTL-ICです。あとで使ってみます。

                   ☆

 パーツ整理と「あの時」のリベンジを兼ねてDTL-ICでキーヤーを作ります。 今どきDTL-ICなど入手できませんしロジックICを並べて作るにしてもC-MOSがお薦めです。 むしろワンチップ・マイコンで作るのがトレンディでしょうから参考にならないBlogです。 お正月が超おヒマでしたら他愛ない話しにお付き合い下さい。 でも師走にこんなBlogを眺めて『ひまそー』にしていると奥さんに叱られますよ。w

 【TTL-ICのキーヤーで知る基本
 前にRTL-ICで作ったキーヤー(←リンク)のTTL-IC版と言える回路です。 RTL-ICは負論理デバイスだったのでICの単純な置き換えだけでは動きません。そのあたりが少し違っていますが動作の基本はまったく同じです。 

 TTL-ICとDTL-ICは互換性があって機能は類似しています。まずは良く見掛けるTTL-ICを使ったキーヤーを製作し、動作が理解できた所でDTL-ICに置き換えようと言う作戦です。

 図はSN7400シリーズの標準TTL-ICを使ったキーヤーです。 4回路入り2入力NANDゲートのSN7400Nと2回路入りJK Flip-FlopのSN7473Nを各1個ずつ使ったプリミティブなキーヤーです。 長短点メモリを持たないので高速キーイングでは多少ミスが出てきますが必要な機能は備えており十分実用になるだけの性能があります。 パドルを繋ぎ実際にキーイングして確かめました。hi
 特殊な部品は使っていないので製作容易です。ICや他の半導体もすべて安価な汎用品です。リレーは『リードリレー』がお奨めで後ほど説明があります。電源電圧は+5Vが標準ですが4〜6Vで支障なく動作します。

 どの様に動作するのか順を追って調べてみましょう。とてもシンプルなキーヤーなのでオシロスコープで各部の動作を見ながら理解するには最適です。低速論理回路なのでオシロスコープがなくてもLEDが点灯するロジック・プローブを使えば動きがわかります。

 まず、パドル(パドル:いまはマニピュレータとは言わない)が操作されず中点の位置にあるときがスタートポイントです。 クロック発振回路のQ2はONしておりQ1のベースとQ3のコレクタはGNDされ、クロックパルスは停止しています。またゲートU2a、U2bともに出力はLowです。 このためFlip-Flop、U1a、U1bともにリセット状態で静止しています。 ゲートU2cの両入力ともにHighのため出力は反転しLowの状態です。キーイング・トランジスタQ4はオフで、リレー接点もOFFのままです。

 いま、パドルが短点:Dotの側に倒されると、U2aの出力は反転し、Flip-Flop U1aのリセットが解除されます。同時にQ2のベースもD2を通してGNDされるためQ2はオフになります。 ただちにクロック発振のQ3がONしコレクタ電流がベースに流れ込んでQ1もオンするため正帰還が掛かってC1の電荷は一気にディスチャージ(放電)されます。R4とR5の接続点には鋭く下方に向かうパルスが現れます。これによりFlip-Flop U1aはただちにトリガされ/Qは反転しLowになります。 放電によってC1の電位が急速に低下するとただちにQ1とQ3はOFFになります。下方に落ちていたパルスは正方向へ急上昇に転じ、R4とR5の接続点にはごく幅の狭いパルスが発生します。
 Q1とQ3がOFFするとC1にはVR1を通して電荷がチャージされます。 C1の電位即ちQ3のエミッタ電位がR4とR5の接続点の電圧によって決まる電圧に達すると再びQ3がONし、Q1もONします。パドルが短点側に倒されている限り上記の動作を繰り返します。 狭いクロックパルスの立ち下がりエッジでFlip Flop:U1aは継続的にトリガされ、その出力:Qと/Qはクロック発振器の周期ごとに反転を繰り返します。 U1aの/Qは短点の周期でHighとLowを繰り返すことになります。 同時にU2cの出力もLowからHighになってリレードライバ:Q4がONしリレーの接点が短点の長さ分(クロック1周期の分)だけ閉じます。

 次にパドルが長点:Dashの側に倒されると、短点の時と同じようにクロック発振器によりパルスが発生します。なお、D1のルートによりパドルの短点側もGNDした状態になります。 こんどはFlip-Flop U1bの方もリセットが解除されるため、U1aの出力によりトリガされて反転を繰り返します。 U1aとU1bの/Q出力はU2cにより負論理のORが取られていて、いずれかがLowのときHighを出力します。この出力によってリレードライブのトランジスタはONします。 今度は短点一つ分と長点側のFlip-Flopで作られ、一周期遅れた短点2つ分の長さに相当するパルスが繋がって出力がでるので、合計で3短点分のパルスに相当する長点が作られます。U2cの出力がHighになってリレードライバ:Q4がONしリレーの接点が長点の長さ分だけ閉じます。

 パドルが中点に戻されると、次のクロック・パルスの到来でFlip Flopは反転し、そのときパドルは離れているため、ただちにU1aとU1bの/QがHighとなってFlip-Flopはリセット状態に戻り保持されます。U2cの出力もLowになりリレー・ドライバ:Q4もOFFになってリレー接点は開きます。クロック・パルスも停止します。 これで短点も長点も出ない初期の状態に戻ります。

 以上がクロック発振器の周期で短点とスペースが作られ、また周期の3倍の長点と1周期の長さでスペースが作られる仕組みです。 かなり簡略化しましたが大まかなキーヤーの動作です。各部の動きはクロック発振器に基づいたタイムチャートを作るとわかり易かったです。

参考:このTTL-ICを使ったキーヤーは古い雑誌記事(JA-CQ誌)を参照しました。 但し記事の回路図には誤植と思われる間違いがあったほか、回路の形式や部品定数にあまり適当でない所がありました。 そのまま作っても正常に動作しないので記事の引用はせず、図面は書き直しました。上の回路図は修正してありこのまま作れば旨く動作します。製作容易で費用も掛からないため入門用のキーヤーとしてお奨めできると思います。

 【発掘したDTL-IC
 DTL-ICと言うのは、Diode Transistor Logicの略です。その名の通りダイオード使ったANDやORと言った論理回路と論理レベルを再生するためのトランジスタ式反転アンプで構成されています。後ほど内部回路の説明図があります。

 写真の上側に3つ並んだM5946とM5952がDTL-ICで三菱電機製です。もちろんたいへん古くて1970年前後のICでしょう. 三菱電機はDTL-ICでは逸早くファミリを構築していたようです。 他の日本メーカーでも作っていたようですが見掛けませんでした。 ICが珍しい時代でしたし秋葉原でもデジタルICはまだまだ一般的ではなかったからだと思います。 このDTL-ICはFairchild社のDTμL9930ファミリと互換性があります。(セカンドソースです)

参考:M5946PとM5952Pはたくさんありました。いずれ捨てるので欲しい人はお早めに。但し、いずれも元々ジャンクの中古品です。動作確認済みを差し上げます。(2016年12月現在)

DTL-ICで作ってみた
 M5946PはSN7400Nとピン接続も含めて互換です。従って、そのまま置き換えできます。 しかし、問題はSN7473Nの方でした。 DTL-ICのファミリにはそのまま置き換え可能な互換品はなさそうです。それにもしカタログに存在したとしても手に入りません。

 手持ちのDTL-ICでSN7473Nと類似のJK Flip-Flopは写真のM5952Pしかありませんでした。 このM5952PもJK Flip-Flopが2回路入っているのは同じなのですが、2つのFlip-Flopのリセット端子が共通になっているのが困りものです。 おそらく同期式カウンタを構成する時に便利なように考えられているのでしょう。作ろうとするキーヤーでは個別にリセットが掛けられないと旨くないのです。 おまけに両方のFlip-Flopのクロック端子が共通ピンなのもまずいです。

 何か補うとか、少し工夫すれば使えそうにも思うのですがそれも面倒なのであっさり2パッケージ使うことにしました。外付けのICが増えるくらいならM5952Pを2つ使っても同じことですからね。 それぞれ半分は遊ばせる訳です。これでクロックとリセットの各入力端子はFlip-Flopごと独立にできたので問題は解決です。

 余った方のFlip-Flopが勿体ないのですが、このような置き換えでTTL-ICの時と同じように旨く動作してくれました。 これでDTL-ICでキーヤーを作ると言う目標はあっさりクリヤです。 まあ、論理回路なのですから「論理」の辻褄が合うように作ればちゃんと動いて当然ですよね。

 リベンジできたのでこれでオシマイでも良かったのですが「パーツ沼」の底をさらっていたら超古いDTL-ICらしき物体が発見されたのです。なので、以下は更なる続きです。

コラム:『TTLとDTL 』
キーヤーにTTL-ICが使われ始めたころ『TTLは高速なのでRFの回り込みで誤動作し易い』と言われたことがありました。今ではRFI対策を行なえば支障ないことが周知されていますが、当時はTTL-ICを嫌ってDTL-ICのキーヤーに戻ったHAMもあったと聞きます。確かに、DTL-ICの最高クロック周波数は低いのでRFの回り込みには幾らか有利だったのかも知れません。ただ、DTL-ICで作ったキーヤーの実物は回路図を含めてお目にかかったことはなかったように思うのです。DTL-ICはあまり流通しなかったので噂ほどには使われなかったのではないでしょうか? 1970年代中ころのお話です。

                 ☆ ☆ ☆

 【さらに初期の国産DTL-ICで
  最初は三菱のM5900シリーズのDTL-ICで出来たらおしまいにしようと思っていました。 しかし、使えそうなDTL-ICを探している途中で最初の写真にあるような日本電気製の超古いDTL-ICが出てきたのでした。それで何とか此れも使ってみたいと思ったのです。 引出しの奥から出てきたのはμPB2A、μPB3A、μPB7Aの三種類でした。

 そのDTL-ICは10ピンの金属缶パッケージに入っています。たぶん1960年代半ばの製品でしょう。 もう50年も前の初期のデジタルICです。 μPB1AファミリはNEC日本電気が市販した最も初期のバイポーラ・デジタルICではないでしょうか?

 もともとハンダ付けの跡がある中古品でした。 まずは壊れていないか確認しました。NANDゲートのμPB2AとμPB7Aは簡単に調べられ全部大丈夫そうでした。 μPB3AはRS Flip-Flopなのですが、どうも様子がおかしくて壊れていそうです。 しかし数個ある全てが同じ症状と言うのもちょっと不思議です。

 やがてわかったのですがこのDTL-ICファミリは全てオープンコレクタ出力だったのです。参照した簡単な規格表にそのことは何も書かれていなかったのです。 結局どのICもプルアップ抵抗の外付けが必要なのでした。 まさかRS-Flip-Flopまでオープンコレクタ出力とは思いもよりませんでした。 初期のDTL-ICはまだ手探りだったのでしょう。ファンアウト、スピード、消費電力が出力端子のプルアップ抵抗で変わるため回路の自由度を上げる目的で外付け式にしたのではないでしょうか。

 古い古いDTL-ICの特徴がわかったので置き換えることができました。 JK Flip-Flopがないのが問題でしたが、RS Flip-FlopにCRを外付けしT Flip-Flopにする方法でこれも解決できました。写真はキーヤーの全貌です。以下、経緯など纏めます。

初期のDTL-ICで苦戦?
 さっそく最終的な回路図です。 ゲート、フリップ・フロップともに、すべての出力端子がオープン・コレクタ形式なのでプルアップ抵抗:RLの外付けが必要です。

 また、CRによる微分回路を外付けしてT フリップ・フロップを構成しています。このようなことからコンデンサ:Cと抵抗器:Rが増えました。この超古いDTL-ICを活用する以上やむを得ないでしょう。このμPB1Aファミリは電源電圧:Vcc=+6Vです。開発された当時はまだ電源電圧は+5Vと言う「常識」はなかったのでしょう。

 ほか、これはお遊びですが半導体は全て古いNEC製を使ってみました。 NPNトランジスタは2SC32です。PNPトランジスタにはゲルマニウムの2SB218を使いました。もっと近代的なシリコンのPNPもあったのですが時代を揃える意味でゲルトラを使いました。 ダイオードもNEC製で古い型式の小信号シリコンDi:SD101です。 ついでにキーイング・リレーもNECのリード・リレーを使います。 レトロな日本電気製の部品だけでキーヤーが作れました。(まあ、NECで揃えたからと言って大して意味はありませんけど)

 回路図の部品は1960年代末にはすべて存在した筈ですから、その当時、国産のDTL-ICを使ったキーヤーが作れた訳ですね。

備考:数に限りがあるようですが、μPB2AとμPB3Aがサトー電気で売ってます。どれも単価100円だそうです。各2個ずつあれば作れます。しかし、古くて珍しいと言うだけのもので他に何のメリットもないのでお奨めはしません。ゴミ扱いだから@100円なんです・爆 (2016年12月現在)

ある物を工夫して使う
 NEC製の古いDTL-ICだけでキーヤーが出来たらと思ったものの残念ながら肝心のJK Flip-Flopがありませんでした。 カタログにはμPB10Aと言うJK Flip-Flopも存在するのですが、私のジャンク沼には沈んでいなかったのです。

 最初はゲートの部分だけNEC製でFlip-Flopは三菱のM5900ファミリからでも良いと思ったのですが・・・何となくそれも残念です。

 左図・右下の様にRS Flip-FlopとゲートICを組み合わせてJK Fkip-Flopが合成できます。 しかしICの数ばかり増えて大変です。どうしてもダメそうならそれも考えたのですが・・・。 それにキーヤーの回路を見るとJ = K = Highに固定して単なる2分周器(バイナリカウンタ)として使っています。絶対にJK Flip-Flopである必要もないでしょう。

 RS Flip-FlopにCRを外付けすれば2分周器が作れることを思い出しました。 その方法でμPB3AがJK Flip-Flopの代用にならないかテストしてみました。 少しCRの値を加減したら旨く分周動作してくれます。 直接リセットする為にリセット端子も必要なのですが、μPB3Aは元がリセット・セット型のフリップ・フロップ(RS Flip-Flop)なのですから、余った入力ピンを使えばこれも簡単にOKでした。それに「セット端子」の方は使いませんから禁止されているR=S=Lowになって、Q=/Q=1や出力が「不定」になることもありません。これでμPB3Aが代替になった訳です。 なお、μPB3AがなければμPB2AあるいはμPB7AをRS Flip-Flopの形に外部で配線すれば同じように使えます。

 図の左上にDTL-ICの等価回路を載せておきました。回路は2入力のNANDゲートの例です。 但しμPB1AファミリのDTL-ICでは図のRLと言う抵抗器がすべて外付けになっているのです。 あとは概ね同じような等価回路でしょう。
 なお、EXPと言う端子は「エキスパンダ」端子です。これはダイオードを必要な数だけ外付けすれば任意の入力数のゲートが作れると言ったDTL-IC特有の便利端子です。 従って多入力のゲートは必要なくて、入力数を増やしたいならダイオードの外付けで間に合わせることができます。μPB2AにあるEXP端子はキーヤー回路には不要なので遊ばせておきます。

DTL-ICキーヤー:左半分
 写真左側に古いNEC製トランジスタ、2SB218と2SC32(2個)を使ったクロック発振器があります。

 2SC32と言えば、その昔50MHzトランシーバの終段増幅に使いましたね。 50MHzで数100mWのパワーが出ましたからHAMの間ではファイナルの石として有名でした。メーカーのカタログにもVHF帯まで使える中電力のRF用デバイスと書いてあります。 しかし当時の一般的な(工業的な)用途を調べると、どうやら汎用のシリコントランジスタの扱いだったようです。 いまで言うところの2SC1815のような存在でしょうか。要するにゲルトラで満足できない時はどんな回路にでも使ったようです。まだ汎用に使えるシリコンの小信号用トランジスタが無かったのでしょう。このような低速パルス回路に使って何も不思議ではありません。

コラム:『2SC32と2SC945』
余談ですが、2SC32研究家のJG6DFK/1児玉さんに伺った話しです。児玉さんのご友人によれば『2SC32を半分にしたのが2SC945』とのこと。 汎用の小信号用トランジスタとしては半分くらいが丁度良いと言うニーズが多かったのでしょう。2SC32が祖先ならRFにも向いた汎用トランジスタとして2SC945が重宝されたのもわかります。実際、2SC945は2SC32(但し新型のほう)の半分と良く似た特性です。ちなみに写真の黒い2SC32は1964年製の旧型です。

 クロック発振器の右にはμPB3Aを使った分周器が2つ並びます。 一つ目でクロックパルスの周期に従い短点とスペースの長さを決めます。 もう一方で更に分周し続くゲートでORをとって三つの短点分の長点を合成するとともに短点一つ分のスペースを作ります。 動作は先のTTL-ICの説明と同じです。

 μPB3Aの部分にはCRによる微分回路やプルアップ抵抗があるのでアナログICのように見えます。 この辺が在り合せのDTL-ICで構成する上で工夫を要した部分でした。 趣味の電子工作だから良いものの、仕事のお方にはつまらん工夫と言われそうですね。

DTL-ICキーヤー:右半分
 長点を合成するORゲート(負論理)とクロック発振器を制御するゲートなどが並んでいます。いずれもμPB2Aを使っています。型番捺印は古い書体です。

 後に続く回路の状態に応じてプルアップ抵抗:RLを変えています。 ファンアウトが1で済むところは4.7kΩ、負荷が重いところは2.2kΩにして十分な論理レベルが確保できるように加減しました。同時に消費電流の低減もできました。

 リレードライバは2SC32です。 すこしhFEが小さいようですが取りあえずリード・リレーがドライブが出来ています。 なるべく高感度なリレーが良いのですが写真のNEC製リード・リレーの電流は多めです。ぎりぎりドライブできると言った状態でした。 無理そうなら2SC32を2つ使ってダーリントン接続にすれば良いでしょう。

 パドルが接続される部分はダイオードを使ったOR回路になっており、クロック発振器のスタート・ストップをコントロールします。 この部分の黒いダイオードはNECのSD101ですが、まあここは小信号用のシリコンDiなら何でも大丈夫です。1S1588とか1S2076Aで十分なんですがネ。

 【クロック発振器で味がきまる?
 正確に言うとクロック発振回路に使うPNPトランジスタでキーイングの感触に違いがあるんですよ!?

 写真では2SB218を使っています。 2SB218はゲルマニウム・アロイ型のPNP型トランジスタです。 もともとスイッチング用に作られたトランジスタなので旨く働いてくれます。

 ところがシリコンのPNPトランジスタ、例えば2SA1015Yなどと比較すると、どうもキーイングの感触に違いを感じるのです。 クロックの波形を観測してみると、ゲルトラだとパルス幅が30μSくらい広くなるようでした。 PNPシリコンでは負方向へ向かう狭いパルスの幅は40μSくらいですが、2SB218では約70μSに広がります。 たった0.00003秒の違いが人間の感触として捉えられるとも考え難いのですが、キーイング・スピードを上げてパドル操作が早くなると、パドルを離すタイミングで微妙に効いてくるのかもしれません。

 最初はまさかと思ったのですが、どうも(低速な)ゲルトラを使うと符号ミスが増えていま一つな印象がありました。 比較のため同じゲルトラでも高速なMesa型に交換したらパルス幅はずっと狭くなってキーイングの感触も変わります。 結局、スイッチングスピードが遅いアロイ型のゲルトラはどうもイマイチみたいなんです。 クロック周波数が僅か数10Hzのキーヤー回路でトランジスタのスイッチング速度の差を体感するなんて思いもよりませんでした。 まあ慣れれば何とかなる程度のごく僅かな違いなんですけれど・・・。

使った石の種類でキーヤーの打ち味が変わるとは面白いね。

いまどきリードリレーでもないが
 リードリレーはHAM局にはあまりお馴染みでないかもしれません。 リードスイッチと言う磁気に感じるスイッチを使ったリレーです。

 特徴は高速なことにあります。ON/OFFが1mS以内で可能です。 極端なところ、1kHzでON/OFFできるほどです。 但し、機械的な寿命があっという間に来てしまうのでそのようなお遊びはお奨め出来ませんけれど・・・。

 また接点が不活性ガス中に密封されているので酸化や汚れによる接触不安定が殆どありません。 欠点は接点の電流容量があまり大きくないことと、OFF時の耐電圧がやや低いことにあります。

 高速動作が可能なのでキーイングリレーには最適です。 真空管のカソード回路を直接キーイングするのは無理ですが、ブロッキングバイアス式のキーイングなら支障ありません。 開閉寿命は数100万回あるので普通にオンエアするならまず交換する必要はないと思います。 接点に無理を掛けないのがポイントなので、開閉電圧が高い時は接点保護にスナバ回路など入れておくと良いかもしれません。 機械的なリレーですから接点の開閉で幾らか動作音がします。

 写真上側のような円筒タイプは古い形式です。 Photo-MOSリレーの登場で活躍の場も少なくなっていますが、よく使われるのは手前のDIPタイプです。これは14ピンのDIP型ICと同じサイズです。 動作電流も10mA前後と高感度なのでドライブは容易です。 ドライバを介さずマイコンのポートから直接駆動できます。 OFF時の接点間キャパシタンスが小さく、RF用スイッチや測定器など小電流の開閉に最適です。

 やはり、機械的な接点ですからチャタリングは皆無ではありません。 どうしてもチャタリングが支障になるなら水銀接点型のリード・リレーもあります。

参考:入手容易なリードリレーとして秋月電子通商のこれ(←リンク)が見つかりました。 5V10mAで動作するのでちょっとした回路の開閉には便利です。マイコンから直接駆動できます。 すごく安いので信頼性などは国産品に及ばないかも知れませんがキーヤーのような用途なら支障ないでしょう。

                 ☆ ☆ ☆


DTL-ICでキーヤー:ムービー】(注意:音が出ます)

video


 キーヤーで恒例(?)のムービーです。 リレーをドライブする代わりに圧電ブザーをON/OFFしています。 実際にパドルを繋いでキーイングしてみました。 長短点メモリーがないので長短点が出たのを見計らって次のパドル操作をします。なので超高速キーイングには向きません。しかしムービーの速度くらいなら余裕で可能でした。 HAMバンドをウオッチすればわかりますが、他局に合わせた早さで支障なくキーイングできます。簡単なキーヤーですがごく当たり前に実用になるでしょう。

いずれブレッドボードの試作から脱却してハンダ付けで製作します。

参考:写真のシングルレバー式パドル:Hi-Mound MK-701はJR7HAN:花野さんがシャックをリニューアルされた際にお譲り頂きました。シンプルで扱い易いパドルで愛用致しております。 VY-TNX! JR7HAN

                  ☆

 パーツ沼の「底さらい」から始まったノスタルジックなお遊びです。 部品の入手に難点がありますから、そっくり真似てNEC製DTL-ICで作るのは難しいでしょう。

 しかし最初の動作検討に使ったTTL-ICのキーヤーなら今でも難なく作れます。 回路図通りのSN7400NやSN7473Nと言った古いTTL-ICもまだ手に入ります。 もしそれらのスタンダードTTLが難しければ74LS00と74LS73と言ったLS-TTLファミリでもOKです。 さらにC-MOSの74HC00と74HC73でも大丈夫なよう考えておいたのでHC-MOSファミリでの代替もできるでしょう。 近代的なマイコン式と大して違わぬ実用的なキーヤーが作れます。もしもエレクトリック・キーヤー未体験でしたら作ってみたら面白いでしょう。

 その上でCWのオンエアにハマってきたら長短点メモリ付きなりマイコン式なりのキーヤーを製作したら良いです。その頃にはキーヤーの良し悪しもわかる筈です。 なお、どんなに良く出来たキーヤーでも初めは上手く打てません。 30分も練習すれば誰でも上手になります。 一度エレクトリック・キーヤーを覚えるともう過去には戻れなくなりますけれど・・・。hi

                 −・・・−

 パーツ沼を覗き込んで、古い半導体の悲哀を感じてしまいました。きちんと動作する機器が作れるのにほとんど無価値な存在になっています。 真空管なら中古品でも十分価値が認められ高額取引されることも珍しくありません。 しかし古くなった半導体にそんなんことはまず稀です。どうやら頃合いを見てきれいサッパリ整理するしかないようです。その前に少しでも使ってやるのが供養と言うものでしょうか? この先も部品供養の製作が続きそうです。

 2016年もありがとうございました。良いお年をお迎えください。新年の挨拶に代えさせて頂きます。 ではまた。 de JA9TTT/1

(おわり)nm

ご注意:このBlogはアフェリエイトBlogではありません。自作を楽しむための情報を提供していますが特定の商品やショップをお奨めする意図はありません。公開している商品情報やリンクは単なる参考です。お買い物は貴方ご自身の判断と責任でお願いします。

2016年12月14日水曜日

【部品】Tube Sockets BB Adapters

ブレッド・ボード用真空管ソケット変換基板
 【変換基板:組立済み
 しばらく前から使えるかどうか気になっていたパーツです。 主役は真空管やソケットではなくて、グリーンの変換基板です。

 普通の真空管回路は高電圧なのでブレッドボードでのテストは不安を持っていました。 またヒータやフィラメントの電流も大きめなのでブレッドボード向きとは思えません。 電池管やカーラジオ用12V管なら良いかも知れませんが・・・。

 先入観に囚われず試してみたいと思って変換基板とそれ用のソケットを買ってきました。 写真は組み立てた状態と、真空管を装着した様子です。 これらのソケットはピンサークル中央のセンターポールが無いため、ピン間のシールドは良くないですから低周波向きでしょうね。 ピンを一列に引き出すことからも高周波で使うのは厳しいかもしれません。

 この状態にするには:(1)変換基板の他に(2)真空管ソケット、(3)細ピンヘッダが必要です。 使用する真空管の種類に応じて9ピン用あるいは7ピン用を製作します。 いずれのパーツもお店に置いてあるので忘れずに入手します。特に真空管ソケットは一緒に購入した方が良さそうです。基板パターンと合わないと困りますので。 パーツが揃ったらハンダ付けで組み立てれば完成です。

参考:新品ソケットの扱い:
新品の真空管ソケットは馴染んでいないため勘合がきつくて真空管の足ピンに無理な力が加わることがあります。無理をすれば割れたりクラック(ひび)が入るかも知れません。 まずは万一割れても支障のない真空管を用意して数回抜き差しします。ソケットが馴染んできてから本番の球を装着します。貴重な球が『空気管』になったら泣きです。w

変換基板の使用例
 ブレッドボードに装着してみました。
9ピンの方は変換された列間隔が広いため、この例では2つのブレッドボード間を跨ぐ形に装着しています。写真の左側がそれです。

 1つのボードに載せるのも可能ですが変換基板の下側を通して引き出す必要があって配線しにくいように思います。写真のような使い方が合理的に見えました。 一方、写真中央の7ピンの方はピンがすべて片側に引き出されているので1つのブレッドボードに問題なく装着できます。

 このあと具体的に何かの回路に使ってみることにしましょう。 構造からみて製作する回路には向き不向きがありそうです。 真空管回路はインピーダンスが高めになることから、低周波回路とは言えどもハイゲインなアンプは難しいでしょう。 HUMの誘導や発振の危険を伴います。 Low-μな球を使いゲインの小さな低周波回路なら良さそうで、例えばヘッドフォンアンプの一部分に使うなどの目的なら大丈夫でしょう。 12AU7あたりがお奨めの球でしょうか?

 いずれにしても引出しパターンが長いことから高周波回路は厳しいです。 まあ、簡単なAMラジオくらいならたぶん大丈夫な範囲でしょう。 発振で手がつけられなくても困りますから、High-gmな球はやめておいた方が良さげです。 6BD6あたりなら安心かな?
 ブレッドボードの「耐電圧規格」を目にしたことはありませんが、100Vや200Vなら十分可能そうに見えます。 感電しないように注意しながら普通の真空管回路に使ってみましょう。

                   ☆

 特に12月だからといって他の月と違いは無いはずですが、何となく気ぜわしくなってきます。 年賀状書きとか大掃除などあって、幾つか余分な用事も増えるのも確かです。 まごまごしているとBlogをパスすることにもなりかねません。hi hi
 真空管用ブレッドボードパーツを用意してお正月はお炬燵で手軽な球遊びなど如何ですか? タイムリーになるよう紹介しておきました。(爆)

 何んでも彼んでもブレッドボードで済ませる訳にも行きません。 ハンダ付けできっちり作らないとちゃんとした性能は出ないことも多いでしょう。 何か実用品を作ろうとは思いませんが思い付きをちょっと実験するには重宝です。 それで「真空管用変換基板」を買っておきました。組み立てておけばすぐに使えます。
 これで具体的に何をしようと言うアテも無いのですが真空管が懐かしくなったら使ってみましょう。 ・・・と言う訳でまだ何を作るかまったくの白紙です。 さて、何を作りましょうかねえ?? ではまた。 de JA9TTT/1

(おわり)fm