EX

2018年10月9日火曜日

【回路】180V DC-DC Converter

180Vを作るDC/DCコンバータ
 【MC34063Aで高電圧を作る
 モトローラ(現・ONセミ)のDC/DCコンバータ用のICを使って昇圧電源を作ってみました。 まずは目論み通りの物ができたようです。 目的はNIXIE管点灯用の高圧電源です。

 スイッチング形式の電源が一般化したので、DC/DCコンバータ用のICにはたくさんの種類があります。 ここで使ったのはMC34063Aという8pinのICです。 使い易いためか様々な機器に使われているようです。 MC34063Aはチョッパー型のDC/DCコンバータ用ICです。

                   ☆

 DC/DCコンバータと言えば真空管式の機器を車載などDC電源で使うために使っていました。 しかし真空管の時代も遠い昔の話になってしまいました。今では少数の愛好家が使うくらいのものでしょうか?(笑) 自身も電池管で作った送信機を移動運用するために作ったことがあります。 トランジスタを2石使ったジェンセン型でした。
 うまく昇圧はできるのですが、電圧は負荷状態によって変動して成り行き任せでした。 簡単な回路なので仕方がなかったと思います。 設計も厄介ですし昇圧トランスの巻線も昇圧比が大きいので2次側にたくさん巻いて・・・。w

 電流容量が必要ならロイヤーやジェンセンのような昔の形式も悪くないと思いますが、ここではせいぜい10mAも取れればよいので簡単にできる方式を模索することにしました。 以下は自家用の備忘です。 用途自体が特殊ですから興味のないお方には意味はなさそうです。  真空管式の無線機に使うにはかなりノイズ対策が必要でしょう。対策できるとは思いますが大変でしょう。

 【180V DC/DCコンバータ回路図
 MC34063Aがよくできているので、回路はかなり簡単です。 出力電流が少ないので、昇圧コイルは親指の先ほどのサイズの既製品で十分間に合います。 電力として数Wが昇圧できれば良いため変換効率は追求していません。 昇圧比が大きいためか、だいたい70%程度のようでした。

 数10Vへの昇圧ならMC34063Aの単独で可能ですが、ここでは180Vへ昇圧します。そのためIC内部のスイッチング・トランジスタでは耐圧が足りません。 外付けで耐圧の高いスイッチング・トランジスタが必要です。 最初の写真で上の方に簡単なヒートシンクとともに見えるのが外付けのPower-MOS FETです。  あまり熱くはなりませんが連続運転するならヒートシンクを付けた方が安心です。

 外付けトランジスタは耐圧の高いNPN型トランジスタでも良いのですが、いまでは耐圧の高いPower-MOS FETが良いでしょう。 入手が容易なうえ丈夫で壊れにくいからです。 少々大げですが、耐圧:500Vで電流容量:10Aの2SK1248を使いました。これは手持ちの都合です。 ドレイン・ソース間耐圧が400V以上で電流容量が5AくらいのMOS-FETで、なるべくON抵抗が低いものが適しています。 代替品として秋月電子通商で売られているTK10A60D(東芝)など良さそうです。(@¥100-)

 昇圧コイルは240μHのインダクタを使いました。 このコイルは変換効率に影響が大きいので良いものを使うべきです。 良いものとは、巻線抵抗が小さく、コアが大きくて磁気飽和しにくいDC/DCコンバータに向いたコイルです。 インダクタンスは220μH〜330μHくらいのものを使います。なるべく巻線の抵抗値が小さいものを使ってください。テスタの抵抗レンジで測定して1Ω以下のものが適当です。2Aくらい流せるものにします。
 以前の話しですが、回路図にインダクタンス値のみ書いておいたら、非常に小さな外観形状のインダクタを使われたお方がありました。 「アンタの言うようにならないぞ」というクレームが来たのです。 回路の動作は考えないでインダクタンス値にのみ着目したのでしょう。 お使いになったインダクタは巻線抵抗が大きくて抵抗器の作用も併せ持っていたのです。 小さく作りたいと言う意図はわかったのですが、小型のインダクタは巻線抵抗が大きいと言うことをご存知なかったんでしょうね。 DC/DCコンバータのコイルに豆粒のようなサイズを使う人はいないとは思いますが、インダクタンスだけでなく巻線抵抗や電流容量にも気を配ってください。

 整流用のダイオードは高速タイプが向いています。 1N4007などの50/60Hz用のダイオードも取りあえず使えます。 しかし整流する周波数が高いので高速整流用ダイオードを使うとロスが減らせます。 ここでは10DF8という手持ちを使いました。 類似のものは秋月電子通商などで安価に手に入ります。(例:PS2010Rなど) 逆耐電圧が400V、電流容量が1Aくらいの高速整流用ダイオードなら何でも良いです。

 Power-MOS FETのゲートとGND間に入っているPNPトランジスタを使った回路は非常に重要です。 Power-MOS FETのゲートとソース間には大きな静電容量が存在します。 そのため、OFFになったらゲートに溜まっている電荷を急速放電しないとスイッチングのロスが発生します。 件の回路はこれを改善するためのもので、OFFになったときゲートに残った電荷を強制的に放電する働きをします。 NPNトランジスタのようなバイポーラ型のパワートランジスタでは無くても良かったのですが、Power-MOS FETを使うなら必須の回路です。 1kΩをゲートとGND間に入れただけでも動作はしますが変換効率が悪くなります。 2SA495Yは2SA1015Yで代替できます。 特殊な部品は使っていないので必ず入れておきます。

 昇圧後の平滑コンデンサ:C4=2.2μFはできればスイッチング電源用が良いです。スイッチング電源は整流周波数が高いことから数10kHzで等価直列抵抗(ESR)が小さいものが適しています。ここでは実験なので一般的なアルミ電解コンデンサで様子を見ました。
 暫く動作させてみた範囲では、発熱など認められないので実験的には支障はないようでした。しかし長時間連続して運転するような機器では、このコンデンサによって機器の寿命が左右されるので専用品が適当です。

 MC34063Aは通販ほか秋葉原でも安価に購入できます。 私はしばらく前に購入したONセミ製を使いました。 2018年10月現在、秋月電子通商でHTC製のセカンドソースが40円で売られています。同じように使えるはずです。 ¥100均グッズに使われているという情報も聞きました。(シガレットライター型の車載用USB電源アダプタらしい?) 分解すると調達できるかもしれません。

# 他に難しそうな部品はないと思います。  簡単に集められるでしょう。

 【負荷テスト
 いくつか負荷抵抗の値を変えて電圧変動を確認しました。 だいたい10mAくらいの容量があれば十分なので最終的には18kΩを負荷にしてテストしてみました。 無負荷状態と比較して1.3Vくらい電圧降下が認められましたが、実際に予定している負荷は写真のようなNIXIE管ですからまったく支障はないでしょう。

 実際の負荷電流は約1.5mA×桁数なので、6桁としても9mAくらいです。10mA以内ですから支障ありませんね。 しかも私は4桁で済ませるつもりですので。(笑) 

 うかつに触ると感電する電圧なのでおっかなびっくり測定しました。 昔は真空管回路など平気でいじったんですが、昨今は高くても50V止まりです。 低圧回路のつもりで無造作に扱うと感電したり火花が散るので神経を使いました。 通電表示にネオン管でも点灯させておく方が良さそうです。 高い電圧に慣れなていないお方は特に気をつけてください。 球のリニヤアンプから見たら180Vなんて低圧電源ですが、触ればちゃんとシビレますので。(笑)

 【180Vが得られる
 調整式にしてキッチリ合わせても良いのですが、用途が放電管用ですから少々の違いは支障ありません。 固定抵抗で作っても良いでしょう。

 ここではR2=3.3kΩ、R3=470kΩで作りました。ほぼ計算通りの電圧です。 MC34063Aの内蔵基準電圧(1.25V)のバラツキもあるので数%の違いは予想されますが、無調整で実用上の支障はありません。

 もし調整式にするなら、R2として2.7kΩと1kΩの可変抵抗器を直列にしておけば良いでしょう。 神経質に180Vに拘る必要はないので固定抵抗で作って出力電圧を確認しておけば十分だと思います。

 【リプル波形
 リップルの波形です。 負荷が軽いと間欠的な動作になるようで、うまく同期が掛からないので綺麗な波形として観測できませんでした。 150〜200μS周期のリプル波形が認められます。

 波高値は0.3Vpp程度ですから、180Vに対するリプル含有率は0.17%くらいになります。 用途に対しては全く支障のないリプル含有率です。 しかし、受信機など通信機用の電源に使うなら一段と綺麗にする必要があるでしょう。 50/60Hzの高調波と違ってずっと高い周波数成分が含まれています。 ノイズの原因になるのでDC/DCコンバータ自体をよくシールドしたうえで、入・出力の部分にLC回路によるノイズフィルタを設けないと実用にならないはずです。

 このままだとこの電源を使った機器の周囲にノイズを撒き散らす可能性もありますが製作する際には幾らか対策を行なおうと思います。  ラジオにノイズが入ったら困ります。

ソ連製のNIXIE管
 負荷に予定しているソ連時代に作られたらしいニキシー管を点灯してみました。  型番は「ИН-12Б」です。 西欧のアルファベット表記では「IN-12B」になるようです。

 このNIXIE管はよほどたくさん作られたらしく、今でもかなり目にします。 容易に手に入るようですが、ぜひともソケット付きで手に入れておくようにしましょう。 ピン数が多いのでソケットの工夫は意外に厄介だと思います。

 180V電源で使い、電流制限抵抗(負荷抵抗)は33kΩでテストしています。 この状態で約1.5mAくらい流れます。 文字欠けなどないので良さそうです。 規格表を見ると最大電流は2mAのようですが、キリル文字の仕様書は良く読めないのでこんな程度にしておこうと思います。 NIXIE管の常識的な使い方ですので大丈夫でしょう。 hi

 デコーダ・ドライバには懐かしのSN74141Nを使うつもりですが、果たして40年モノのICが無事なのかちょっと心配がありますね。ソ連製のセカンドソースも手に入るようです。

                  ☆  ☆

 数年前だったと思うのですが、NIXIE管がブームになったとき纏めて入手されたという球を譲っていただきました。 近頃は貴重品扱いですから、そのまま使わずに保管しておけばいつかお宝に化けるかも知れません。 しかし使いにくいし半導体と違って寿命は短めですからそのうち見向きもされなくなるかも知れません。 このあたりどうなるか先が読めませんね。(笑)

 大切に保管すると言うのも一つの考えかも知れませんが、例によって「電子デバイスは使ってこそ価値がある」と思うので使うための検討から始めることにしました。 AC電源が前提なら、ニキシー管用に高圧巻線のある電源トランスを使うのが一番簡単です。 しかし、大した電流でもないので12Vあたりから昇圧できたら扱い易いかも知れません。 わざわざ特殊なトランスを購入しなくて済みます。 試してみたら簡単に必要な電圧と電流が得られることがわかりました。 なんだか面倒だなあと思っていた昇圧コイルも手持ちの既製品で間に合いそうです。 これなら高圧電源のことで悩まずニキシー管が使えそうですね。 ではまた。 de JA9TTT/1

(実験するお方は、くれぐれも高い電圧に気をつけてください)

(おわり)nm

2018年9月25日火曜日

【回路】7MHz PLL Oscillator (4)

7MHz帯のPLL発振器・その4 ループフィルタの設計編
HAMのPLLの設計
 7MHzのPLL発振器を題材にしたPLL設計の第4回です。 設計に必要な数値は前回(←リンク)までですべて集まりました。では始めましょう。

 HAM用の設計と言うようなものがある訳ではありませんが、HAM用のRig(無線設備類)で使われるPLLはどれも類似の設計で大丈夫です。 ツマミを回してチャネルを設定し、送受信を繰り返すというような使い方が想定できます。 軍用無線機のように特殊な用途は考えなくても良いでしょう。 従って、どれも同じような設計で行けるのです。(フル・ブレークインは幾らか検討が必要ですが)

 PLLの教科書を見ると、その特徴について詳しく書かれています。さらに自動制御理論に基づくループ特性の解析にページが費やされます。 もしPLLを専門にするならきちんとした理解が必要でしょう。

 しかし、用途はほぼ決まっているのでそれにマッチする設計ができれば我々HAMの希望を満たすことができます。 理論は不要とは言いませんが、基本的な動作を知っていれば、あとは製作に「使える」設計ができれば十分役立ちます。 以下、途中の解析過程はすっ飛ばして実際に使える設計を目指します。「実用設計法」とは言っても理論に基づいていますから、いい加減と言うわけではありません。どうぞ誤解なきように。(笑)

  実用的な内容を扱っています。しかし秘密の呪文を教えるものではありません。そもそも隠すような秘密なんてありません。 必要なのは、まずは自らの手を動かすことだと思います。さっそく例題を検算してみるのも良いですしVCOの試作に取り組むのもFBでしょう。 読んで「わかったようなつもり」になるのも結構ですが、実際にやってこそ意味があると思います。その気持ちが無ければこの先はつまらないかも知れません。

写真は以下の流れと直接の関係はありません。 かつて信越電機商会で売られていた金石舎製のPLLユニットです。「256チャンネルPLLシンセサイザユニット」と称していました。数種類ありましたが写真のこれには沖電気のPLL用LSI:MSM5807が使われています。このPLLユニット一つが500円でした。(信越電機商会はいまの秋月電子通商)

設計の準備
 左図は再掲載です。 「7MHzの発振器が欲しい」と言うだけでは漠然としています。 もう少し詳しく決めておく必要があります。 設計に必要な項目を整理しておきましょう。 あらかじめわかっているものもありますが、計算を始める前に検討しながら決めて行く項目もあります。 しかし、大して難しい内容はありません。

(1)周波数範囲:7.000MHz〜8.000MHz
   目的が7MHz帯の発振器なのでこのように決めます。
   この周波数の間で細かく周波数が設定できること・・・も要求項目でしょうか。
(2)周波数ステップ:10kHzあるいは5kHzとする。
   あまり細かい刻みで発振するPLLは製作が難しいことがわかっています。
   飛び飛びの各発振周波数の間をアナログ的に補間する場合、10kHz刻みの方が
   わかりやすいでしょう。 ここでは周波数ステップに10kHzを選びましょう。
(3)応答時間;10mS
   発振周波数を切り替えたとき、どの程度の速さで安定するのか。 (詳細は次項)
(4) 使用する位相比較器とVCO:この2つは既に決まっています。
   それぞれの定数、KpとKvはわかっています。 前回までのBlogで調べました。
(5)電源要件:電源電圧は5Vで設計します。
・・・・・・などです。

 使用部品ですが、ここでは既に見てきたようなパーツで実現することを前提にしたいと思います。 PLL用のICはMC145163PあるいはTC9122P+HC4060+HC4046を使います。 VCOにはMC1648Pまたは同タイプを使うことにします。 汎用の設計ですからほかのPLL用ICやVCOを使う際も同じようにできます。

 【PLL回路の動的特性
  PLLの応答特性についてです。  PLLの話では決まったように左図が登場します。 見飽きていますが説明の都合で登場もやむを得ません。 何を意味するグラフなのか初めて見るなら難解です。
 簡単に言うと周波数を切り替えた時にどのように切り替わって行くのかを示したグラフです。 縦軸は周波数で、以下の話の流れて言えば、縦軸のゼロの位置が7000kHzとします。 1.0の位置が7010kHzです。 横軸は時間軸ですが、目盛りはRadianが単位で、周期は「自然周波数」(後述)が単位になっています。 以上がグラフを見るための予備知識です。

 いま、受信機を想像してください。7000kHzを受信しています。7010kHzを聞きたいと思ったらダイヤルに指をかけて回すでしょう。受信周波数を移るにはそれなりに時間が掛かったはずです。
 PLLも同じで、切り替えから新しい周波数に移るまで何がしかの時間がかかります。 新しい周波数に落ち着くまでがロックアップタイム:tLです。 tLは短いほど良さそうですが極端に早くはできません。 だいたい1mSから100mSの間で決めることが多く、HAMが使うPLLではtL=10mSが無難なようです。 10mS=1/100秒なら感覚的にはほぼ瞬時と感じられますね。

 また、切り替えた瞬間からどのように変わって行くのかはダンピングファクタ:ξで決まります。(ξ:ギリシャ文字のグザイ) 受信周波数を移るとき、ダイヤルをそろそろと回して7010kHzを行き過ぎぬような合わせ方があります。 それには慎重にゆっくりダイヤル操作するでしょう。7010kHzに合うまで少し時間がかかります。 普通はそのようにダイヤル操作しません。 7010kHzを行き過ぎても良いので早く回し、行き過ぎたら少し戻して7010kHzぴったりに合わせるでしょう。その方が素早くできます。 図は、そのような過程を示すもので、ダンピングファクタ:ξの値との関係を示しています。多くの場合、ξ=0.5〜0.7あたりにとるのが適当です。ξがそのあたりなら「ちょっと行き過ぎて合わせる」と言ったダイヤル操作と類似になります。 数字で言うと、行き過ぎ量(オーバーシュート)を20%以下としてξ=0.7を選びます。実際、ξ=0.7でほとんど支障ないです。

 グラフを見ると、ξが小さくなると「振動的」になります。 PLL回路は出力から入力方向へ信号を戻しています。  帰還回路になっています。 ξを小さくすると負帰還からやや正帰還気味になります。 完全な正帰還になると固有の周期で振動(発振)します。 その固有の周期(周波数)を「自然周波数」と言い、ωnで表します。なお、ωnはVCOの発振周波数と関係はありません。 図の振動波形はωnの軌跡であり、系の応答はその周期に支配されます。ωnの単位はradian/secです。 もちろん持続的に振動させてはいけませんから、ξの大きさを適切に選ぶのは言うまでもないでしょう。

 ξとωnはロックアップタイム:tLと密接に関係します。 グラフからξ=0.7にとると、約5%以内の誤差で目標周波数に落ち着くのはωn・t=5(ラジアン)のあたりです。 これからωnが求められます。

ωnを求める計算式は:ωn=(ωn・t)/tLです。また、tL=10mSですから:
ωn=5/tL=5/(10x10^-3)=500 (rad/sec)・・・・・になります。

 tLやωnについて、PLLの解説書には詳細な説明があります。しかし我々が作るPLL発振器にはあまりバラエティはなく、概ね決まり切った値で作れば間に合ってしまいます。 tL=10mS、ξ=0.7で良いでしょう。 従って、ωnも500 (rad/sec)になります。

参考: tLが10mSではないときの参考値。
tL=1mSなら、ξ=0.7として、ωn=5000 (rad/sec)
tL=100mSなら、ξ=0.7として、ωn=50 (rad/sec)

# 大雑把な話ですが、周波数安定度の良いVCOならtLは長めに、あまり安定性がよくないVCOではtLは短めが良いです。

 【ループフィルタの形式と計算

計算式では以下の記号を使います。
 (1)位相比較器ゲイン:kp
 ・・・・・ここでは74HC4046のType Ⅱ型位相比較器を使うので、Kp=0.398 (V/rad)です。 詳しくは前々回のBlog (Part 2)を参照して下さい。

 (2)VCO感度:Kv
 ・・・・・これは実測によって求めた値を使います。詳しくは前回のBlog (Part 3)を参照します。 ここで使ったVCOは、Kv=3.338x10^6 (rad/V)です。
 このKvの値はVCOの設計ごとに違うので事前にVCOを試作して求めておきまます。 Kvは机上の計算もできますが精度が悪いので、試作して実測する方が確実です。

 (3)平均分周数:N
 ・・・・・7MHzから8MHzの間を10kHzステップで発振するPLLを作っています。プログラマブル・カウンタの分周数Nは、7MHzのとき、N=7000/10=700になり、8MHzの時はN=8000/10=800です。 平均のNは:N=(700+800)/2=750となります。

 (4)ロックアップ・タイム:tL 
 ・・・・・ここではtL=10mSに決めました。単位はSec(秒)です。

 (5)ダンピングファクタ:ξ
 ・・・・・オーバーシュート<20%の条件などからξ=0.7を選びました。

(5)自然周波数:ωn
周波数が目標値の5%以内に落ち着くのは、上記のξと応答性のグラフから読み取って、ωn・t=5 のポイントであることがわかります。

 ωn・t=5ですから: ωn=5/t= 5/10x10^-3=500 (rad/sec)

ループフィルタの計算:
 設計に必要な情報がすべて揃ったので計算しましょう。 左図を参照してください。

(1)ラグ型フィルタ:
 一番上のFig・1 は一次遅れフィルタ(ラグ・フィルタ)と呼ばれるものです。 稀に使われますが、応答時間と応答特性を独立に決めることができません。 制約が大きいためPLL周波数シンセサイザではあまり使われません。 抵抗器はひとつ少ないのですが特にメリットがないので設計式は省きます。


(2) ラグ・リード型フィルタ(パッシブ形式)
 二番目のFig・2はラグ・リード型のループフィルタです。 フィルタの後にOP-Ampがありますが、フィルタ部分にはアクティブ回路(アンプなど)を含みません。 この形式のフィルタは以下の設計式で計算できます。

  R2=(1/C)・((2・ξ/ωn) - (N/(Kp・kv)) ・・・・・・式・1

  R1=((Kp・Kv)/(N・C・ωn^2)) - R2 ・・・・・・・・式・2

 計算式には未定義の定数:Cがありますが、これはコンデンサ:C1の値です。 あらかじめ決めておく必要があります。単位はファラドです。 この設計では10μFに選びました。 とりあえず適当にCの値を決めて計算した結果、R1およびR2が数100Ω以上、1MΩ以下にならなければ、Cの値を変更します。 Cの値は0.1μF〜数10μF以下に選ぶべきです。必ず漏れ電流のないコンデンサを使います。 フィルム型かタンタル・コンデンサにします。 コンデンサは容量計で測定しておくと良いです。その実測値に基づいてR1やR2を計算すると確実です。

 さっそく具体的に求めてみましょう。 C=10μFとします。
  R2=(1/10x10^-6)・((2・0.7/500) - (750/(0.398・3.338x10^6))
      =100000・(0.0028 - (750/1328524)) ≒ 223.55・・・・・単位:Ω

  R1=((0.398x3.338x10^6)/(750・10x10^-6・500^2)) - R2
    =(1328524/1875) - 223.55 ≒708.55 - 223.55 = 485.0・・・単位:Ω
  ・・・・・となります。

 使う抵抗器は計算値の±10%以内で選んでおきます。 この計算例では、C1=10μFとして、R1に470Ω、R2に220Ωを使います。
  なお、C2はリファレンス信号の高調波を減衰させるものです。 おおよそC1の1/100くらいに選びます。 C2=0.1μFとしました。


(3) ラグ・リード型フィルタ(アクティブ形式)
 下段のFig・3もラグ・リード型のループフィルタです。 上記と同じラグ・リードフィルタですが、OP-Ampを使って構成しています。 ループフィルタの出力インピーダンスが下がりノイズの混入が防げます。 この形式のフィルタはパッシブ型より少し計算式が簡単です。 OP-Ampのオープンループ・ゲインは十分大きいとします。

  R1=((Kp・Kv)/(N・C・ωn^2))     ・・・・・・・・式・3

  R2=((2・ξ)/(ωn・C))                 ・・・・・・・・式・4

 この計算式にも未定義の定数:Cがありますが、同じくC1の値です。 あらかじめ決めておく必要があります。 OP-Ampのドライブ能力などから、0.01μFから数μFの範囲が良いです。 とりあえず適当にCの値を決めて計算した結果、R1およびR2が1kΩ以上、1MΩ以下に入らなければCの値を変更します。 Cの値は0.01μF〜数μF以下に選ぶべきです。 コンデンサの注意は上記と同じです。

 さっそく具体に求めてみましょう。 C=1μFとします。
  R1=((0.398x3.338x10^6)/(750・1x10^-6・500^2))
    =(1328524/187.5) ≒7085.5  ・・・・・・単位:Ω

  R2=((2・0.7/(500・1x10^-6))
      =((1.4/0.0005) ≒ 2800          ・・・・・・単位:Ω
  ・・・・・となります。

 こちらも計算値の±10%くらいに選んでおけば十分です。 従って、C1=1μFとして、R1は6.8kΩ、R2は2.7kΩにします。
  なお、C2はリファレンス信号の高調波を減衰させるものです。 おおよそC1の1/100くらいに選びます。 C2=0.01μFとしました。

注意:アクティブ型は反転型のアンプを使うため、ループフィルタを出た信号が反転します。 VCOの変化方向を逆にする必要があります。 電圧が低いとき高い周波数で発振し、電圧の上昇とともに発振周波数が下がる特性が必要です。 前回のBlogで扱ったVCOの場合、バリキャップのカソード(K)端子をVdd(=5V)に接続し、アノード(A)側へ制御電圧を加えるように変更します。
 既成品のVCOモジュールを使う際にはこうした配線変更はできません。 OP-Ampを追加して反転アンプを構成し、信号を元に戻すようにします。 ほかに74HC4046のように位相比較器の入力が2つとも引き出されていれば、VCO側とリファレンス側を入れ替えても良いです。 MC145163PのようにICの内部で配線されているとその手は使えないので、VCO側で対策するか反転アンプを追加する方法になります。

# ラグ・リード型にはパッシブ型とアクティブ型がありますが性能は同じです。 TC5081Pを多用していた頃はアクティブ型を使っていましたが、最近はHC4046を使うのでパッシブ型がほとんどです。 お好みでどちらでも良いと思います。 同じように設計すればPLLとしての性能に違いはありません。

これでループフィルタの設計は終了です。  定型の式に当てはめるだけで求まります。 計算に慣れていないとちょっと難しかったでしょうか?  例題を参考に計算してみてください。 さらに実際のPLL回路で試すときちんとロックするのが確認できるでしょう。 スパっとロックするPLLは気持ちの良いものです。(笑)

                    ☆

リファレンスは漏らさない
 続いて、きれいな出力信号を実現する為の工夫についての話しです。 きちんとループフィルタを設計すれば確実にロックします。 しかしそれだけではまだ不十分なのです。

 位相比較器の出力は周期が比較周波数(リファレンス周波数)のパルス波です。 それを平滑して(平均化して)VCOを制御するDC電圧を得ています。 周波数切り替えの過渡的な状態が終わりロック状態になると細いパルスが時々現れる状態になります。

 ラグ・リード型のループ・フィルタを通っただけではリファレンス周波数の成分がかなり残っています。この例では10kHzとその高調波成分が残ります。 いくらループ・フィルタの設計を完全にしても残ったリファレンス成分によってVCOが変調されます。 ロックはしていてもスペクトラムが汚いのです。 このことはMotorola社の設計ハンドブック(末尾で紹介)でも触れられており、リファレンス漏れの対策は不可欠です。

 簡単な方法としてFig・4(左図)があります。単純な一次のフィルタを重ねただけでも効果的です。 さらに、OP-Ampを使ったアクティブ・フィルタを追加する例がFig・5です。 この2次のローパスフィルタ(以下LPFと略)はたいへん効果的です。 このLPFのカットオフ周波数は自然周波数:ωnの5倍程度に選ぶのが適当です。

 ここで扱った7MHzのPLLではωn=500 (rad/sec)でした。 追加するLPFのカットオフ周波数をωcとすれば、ωc=5・ωn=5・500=2500(rad/sec)となります。

 このLPFの計算は簡単です。(Ref.Filter Eの部分)

  R = R3 = R4とした場合、R = 1/(2・ωc・C3) ・・・・・・・式・5
  C4 = 4・C3  ・・・・・・式・6
 ・・・・となります。 なお、1kΩ ≦ R ≦1 MΩになるようコンデンサを選びます。

 ここでは、ωc = 5・ωn = 2500、C3 = 0.011μFとしました。 0.011μFというのは、0.022μFを2つ直列にした値です。

 R = 1/(2・2500・0.011x10^-6) = 18.182x10^3 ≒18kΩ にしましょう。
 実際に製作するにあたっては、C3としては0.022μFを2つ直列にし、C4としては0.022μFを2つを並列にします。このLPFの効果的は以下の回路シミュレーションで確かめられます。

ループフィルタのシミュレーション
 ループフィルタの部分でリファレンス周波数が・・・ここでは10kHzが・・・どれくらい減衰するのかを見るためにシミュレーションしてみます。

 (1)ループフィルタのみの場合、(2)単純な1次のフィルタを二つ重ねたフィルタの場合、(3)さらに2次のアクティブ・フィルタを追加した三つの場合についてシミュレーションします。 回路シミュレータはいつものようにLT-Spiceでバージョンは2018年9月現在の最新版:XVIIです。

 シミュレーションではOP-AmpにLT-1001を使っています。 低周波でのシミュレーションですからOp-Ampは何でも大丈夫でしょう。 回路シミュレータ:LT-Spiceの詳しい扱い方はOHM社やCQ出版社から参考書が出ています。

補助のフィルタは効果的
 緑色のトレース:V(out-7)がループフィルタのみの特性です。実線が振幅特性、破線が位相特性です。(以下同じ) グラフを読み取ると、10kHzで-12dBですから、いくらも減衰しないことがわかります。 ループフィルタだけではリファレンスの漏れはだいぶ大きいのです。

 青のトレース:V(out-6)が単純な1次のフィルタを重ねた特性です。グラフを読み取ると、10kHzで-47dBになりました。 ループフィルタのみと比較してさらに1/50以下まで減衰します。ごく単純なフィルタでもかなり効果的です。 ほとんどのテストをこの状態で行ないましたが満足できる結果が得られています。

 赤のトレース:V(out-3) が2次のアクティブ・フィルタを追加した特性です。 グラフから読み取ると、10kHzで-87dBになります。 ループフィルタのみと比較して1/5000以下です。非常に効果的です。

 なお、リファレンスの漏れはループフィルタからだけでなく、電源系統やGNDの共通インピーダンスによる結合などもあります。 電源のデカップリングを厳重にし回路のアースポイントをよく考え、デジタル部分とVCOが共通インピーダンスを持たないよう注意します。

PLL発振器のスペクトラムが汚れる一番の原因はリファレンス漏れにあるので、十分な対策を行ないたいものです。

                 ☆  ☆

 以上でループフィルタの設計とその関連でリファレンス・フィルタの設計の話は終わりです。 Part 1〜Part 3までのデータを総合して設計すればきれいなスペクトラムのPLL発振器が作れます。 ぜひ実践されてください。

 以下は、追加として74HCT9046Aの位相比較器についてのお話しです。 高性能な位相比較器として話題になったこともあるそうですが、使い方の説明がほとんど見当たらないため持て余しているかもしれません。 しかし使うのは難しくありません。

 【74HCT9046Aってどんなもの?
 74HCT9046Aは74HC4046の改良型として登場しました。 いくつか特徴がありますが、ここでは位相比較器に注目しましょう。

 Part 2で見たように、PLL周波数シンセサイザに向いた位相比較器としていわゆるType II型があって広く使われています。 万能に使える位相比較器ですが欠点があります。ある意味で致命的な欠点と言えるかもしれません。 その欠点を解決するために開発されたのが74HCT9046Aです。 9046Aを使えばHC4046で問題になった「デッドゾーン」による信号の汚れは起こらなくなります。 それはどう言うことか次項で説明します。

  74HCT9046Aは普通に入手できます。 写真は少々古いためフィリップス製ですが、現在ではNexperia製が手に入るでしょう。 ピンピッチ2.54mmのDIPパッケージ品もカタログにありますが入手できませんでした。ニーズが少ないためか殆ど作っていないようです。 ここではSO-16パッケージの面実装型を使いました。 変換基板に乗せてブレッドボードで実験しました。 ピンピッチの狭いTSSOP-16パッケージもあります。 74HCT9046Aは今のところ秋葉原や日本橋にはないようです。 部品商社のMouserほかで単価300円くらいです。

 【74HCT9046Aの特徴とループフィルタ設計
 左図のFig Aは、従来からあった74HC4046の位相比較器:Type IIの特性です。 2つの入力の位相差に比例した電圧が得られることがわかります。 しかし、位相差がゼロ付近で直線性がなくなっています。 このグラフはたいへん誇張されていますので、実際にこれほど目に見えるわけではありません。

 しかし、こうした特性があるのは事実であり、結果としてPLL発振器の出力スペクトラムに現れるのです。 PLLはロックしているものの、位相誤差ゼロ付近の微細な揺らぎが不感帯に掛かるので制御されず、信号はそのまま揺らぐのです。 スペクトラムを微細に観測すると揺らぎのため太くなっていることがわかります。

 原因はType II型位相比較器の動作メカニズムと内部構造にあります。 位相ロックしている状態でも何らかの外乱があり、ごくわずかですが発振周波数は変動しそうになります。 位相比較器はその変動を位相差として捉えます。 捉えた位相のずれを修正するため、位相差に比例した幅のパルス波が出力されます。 ところが既にロックした状態ですから非常に小さな位相のずれです。従って出力のパルス幅はとても狭いのです。 ICの内部には構造上必ず数pFのストレー容量が存在します。その狭いパルス波はストレー容量の充放電で吸収されてしまい有効な出力として得られないのです。  狭いパルスが出力されるのはロックした状態の前後に限られます。 そのためFig.Aのような不感帯(デッドゾーン)が現れるのです。

 さらにType II型の位相比較器の出力はC-MOSに類似の構造です。(Part 2のType-II型位相比較器の等価回路図を参照)電源側にP-ChのMOS-FETが、GND側にN-ChのMOS-FETが入っています。 両方のFETが同時にONになると電源からGNDに向かって過電流が流れます。 そのため同時にはONにならないようになっています。これも位相差ゼロ付近に不感帯ができる原因です。

 Fig.Bに74HCT9046Aの位相比較器の特性を示します。  位相差ゼロ付近に不感帯はありません。これは位相比較器の出力部分を改良してあるからです。 MOS-FETのON/OFFでは同時ONを防ぐ必要があって、完全に不感帯をなくすことはできません。 そこで内部抵抗を持った電流源を使って同時ONしても支障ないように工夫しているのです。 また電流源は等価的な内部抵抗を持つように作られており、Fig.Eの例で言えばストレー容量はC1あるいはC2と並列になる構造のため、微小容量の充・放電に吸収されず出力としてきちんと得られるようになるのです。 そのため、Fig.Bのように不感帯(デッドゾーン)のない位相比較器になります。 Type II型の位相比較器の欠点であるデッドゾーンの問題は解消され、ロックした状態で綺麗なスペクトラムが得やすくなっています。

 Fig. Cは74HCT9046Aのピン配置です。 HC4046と類似ですが、位相比較器:PC-IIIが省略されています。 Pin 15はPC-IIの電流値を決める端子になっています。 そのほか、Pin 5のInhibit端子の動作が異なります。 HC4046ではPin 5をHighに保つと内蔵のVCMがインヒビット(抑止=機能停止)されました。 HCT9046AではVCMだけでなく位相比較器もインヒビットされます。 従って位相比較器だけを使いたい時もPin 5はLowに保つ必要があります。  74HCT9046AはVCMも改良されていますが、未だに無線通信系の用途には使えません。 Fig.DはHCT9046Aの内部ブロック図です。 Pin 15が電流源の電流値設定端子:Rb端子であることに注意します。

 Fig. Eに74HCT9046Aの使い方を示します。
基本的に、ラグ・リード型ループフィルタの設計と同じです。 ただし、R1'と言う抵抗は実際にはICの内部に存在るするので実態を伴う部品としては存在しません。 具体的には(1)仮にR1'としてループフィルタを設計します。 これは既に見てきたループフィルタの設計とまったく同じでOKです。 C1を決めてR1'とR2の値を計算します。 なお、HC4046と同じようにKp=0.398 (V/rad)で設計します。 Vdd=5Vで使うなら意識しないと思いますが、HCT9046Aでは、このKpの値が電源電圧によって変化しないことに注意してください。(2)仮に求めたR1'を内部抵抗に置き換えるための計算を行ないます。 内部抵抗の値はPin 15とGND間に接続した抵抗器:Rbの値で制御できます。

 このRbの値はR1'の17倍にすれば良いことになっています。 例えば、R1'=4.85kΩなら、Rb=82.45kΩ ≒82kΩとなります。  74HCT9046Aの仕様書によると、Rbの範囲は25kΩ〜250kΩでなくてはなりません。 したがって、R1'としてはその1/17の約1.5kΩ〜15kΩになります。この範囲を外れるときは、C1の値を変更して再計算します。

 以上、何となく難しそうな74HCT9046Aですが意外に簡単なことがわかったと思います。 まずは従来通りにループフィルタを設計し、R1'とR2を求めます。 R1'を内部抵抗で置き換えるためRbの値を計算します。 Rbの値が規格の範囲にあれば設計終了です。 もし範囲に入らないときはC1の値を変更して再計算します。 あとはR1'の位置はゼロΩ・・・すなわち何も抵抗器は入れずにただショートしておけばOKです。 Pin 15とGNDの間に計算で求めた値のRbを入れるのを忘れないでくださいね。

 上記の74HCT9046Aの使用例は、ループフィルタとしてパッシブ型のラグ・リード型で説明しました。 もちろんアクティブ型でも同じです。 またラグ型のフィルタにも使えます。 設計方法も同じですからR1'を内部抵抗に置き換える計算を行なえば良いわけです。

参考・重要:位相比較器に74HCT9046Aを使うと劇的な変化が起こるように感じたかもしれません。 しかし、実際にはそのようなことはなく、74HC4046でもループフィルタの定数を上手に選んでやることでまずまずな性能が得られます。ループフィルタの抵抗値を小さく選びIC内部のストレー容量の影響が見えにくくなるように設計します。そうすれば影響はかなり軽減されます。 具体的にはループフィルタの抵抗値(特にR1)を低めに・・・100Ω以上〜1kΩ以下あたり・・・に選び、伴ってコンデンサ:C1の値をかなり大きめにすることで改善が見込めるのです。
 実際に74HC4046を使いループフィルタを低インピーダンスに設計したPLL発振器と74HCT9046Aを使った例を比べても極端な違いは感じませんでした。 もちろん、詳細な比較測定を行なうと確かに違いはあります。新たに購入するなら74HCT9046Aが良いでしょう。 しかし74HC4046も回路定数を上手に選べば十分使えます。手持ちをいますぐに捨てる必要はありません。(笑)
 同様の意味から、TC5081APや他のPLL用LSIの位相比較器も同じ問題を抱えていることになります。しかし設計次第でそこそこ使えます。 なお、位相比較器のスピードが遅いのは明らかに不利です。標準C-MOSのCD4046Bやそれに近い古いタイプのCB用PLL-LSIは性能が悪いようでした。TC5081APが高速な74HC4046に劣るのはやむを得ません。

7MHz PLL発振器・’9046Aを使う
 位相比較器に74HCT9046Aを使った7MHz帯PLL発振器の回路例です。 ループ・フィルタの設計は2次のパッシブ型です。  ほかの回路部分はPart 1〜Part 3の回路と同じです。 VCO回路はディスクリート構成に置き換えても良いでしょう。 性能の向上が期待できます。

 コンデンサ:C1は1μFで設計しました。 計算の結果、R1'=4.85kΩ、R2=2.2kΩになりました。 R1'はIC内部の信号源抵抗と置き換えます。 Rb=17・R1'なので、Rb=17・4.85(kΩ)で、Rb=82.45kΩ ≒ 82kΩとします。
 なお、74HCT9046Aを使ったからと言ってリファレンス漏れの対策は必須です。 OP-AmpにLMC6482AINを使った簡単なリファレンス・フィルタを付けておきました。 もちろん、この部分はアクティブ・フィルタ形式のLPFでも良いでしょう。
 実測してみますとたいへん良い特性の7MHz帯周波数シンセサイザになりました。 ただし74HC4046でループフィルタを低インピーダンス設計したものと極端に違うわけではありません。あまり幻想を抱きすぎませんように。(笑)

  PLL用のLSI:MC145163Pを使って実験をはじめましたが、オールインワンのLSIではそのもの本来の機能・性能ですべてが決まってしまいます。 TC9122Pや74HCT9046Aのような個別のチップで構成するとすこし煩雑にはなりますがより高性能化が図れるため有利なこともあります。 手持ちの部品を活かした設計をしたいものです。

                   ☆

 この「7MHzPLL発振器」もずいぶん回数を重ねました。 一気に終了にしたいと思ったら長大になってしまいました。 十分に網羅できていないかも知れませんので必要に応じて続編を出したいと思います。 忌憚のないご意見をいただければと思います。

このBlogは実用本位のものです。 学問的なものではありません。学生さんが参照して実験レポートや論文などを作成するには内容不十分です。 またプロフェッショナルな設計なら設計の裏付けが欲しくなります。 アマチュアのお方も詳細な解析にご興味があれば本格的な研究をお勧めします。 しかしホビーストやHAMが週末の余暇に実用品を製作するには役に立つはずです。

製作にあたり機械的な構造のへの配慮もPLLでは非常に大切です。 冒頭写真のメーカー製PLLユニットのように、部品が振動せぬよう樹脂で固めるような対策も必要です。 特に移動運用する無線機では振動対策は必須です。VCOにコア入りのコイルを使っているなら、コアは必ずパラフィンなどのワックスで固めておきます。 振動に強いようにVCO部分を表面実装部品で小さく作るのはたいへん有効です。 さらに電源トランスを内蔵しているなら磁束漏れがVCOに誘導すればノイズ源になります。電源トランスのコアの機械的な振動(トランスの唸り)もPLLの大敵です。構造の工夫や部品の振動対策のような電気的ではない部分もとても重要です。

                   ☆

 どうしても新しいデバイスに目を奪われがちですが、それでは温存していたパーツが浮かばれません。 もちろん旬を過ぎたパーツを無理して使っても不合理なものしか作れないなら、あまり意味はないと思います。 しかし、まずまずな性能が得られ、しかも設計の妙味があるなら旧型デバイスも十分価値があるでしょう。 MC145163Pに限らず、PLL系のICには活用の場が残されています。 陳腐化する前に積極的に使ってやりたいものです。 うまくロックするPLLが作れましたらレポートでも下さい。うまく行かなくてもコメントなどどうぞ。 待ってます。 ではまた。 de JA9TTT/1  (再校正・縮小版: 2018.09.30)

関連情報:7MHz PLL Oscillator関連のリンク
(1)イントロ編:(Part 1:こちら←リンク)
(2)PLLの機能分析編:(Part 2:こちら←リンク)
(3)PLLに向いたVCOの研究編:(Part 3:こちら←リンク)
(4)ループフィルタの設計編(最終回):(Part 4:いま見ているここです)

参考資料:PLL回路の設計関係
(1)「PHASE-LOCKED LOOP SYSTEMS (2ndED)」、Motorola、1973(英文)
   PLLのバイブルのような書籍です。PDF版がネット検索で得られます。
   非常に古いため、C-MOS構造のチップに関する情報はまったくありません。
   このBlogではこれを参照のうえ現代にマッチするようアレンジしています。
(2)「PLL回路の設計と応用」、遠坂俊昭 著、CQ出版社、初版2003年11月1日、
   JAN9784789833455、¥3,024ー
   PLL回路について扱う近代的な書籍は殆どないためたいへん貴重です。
   PLL回路の解析はユニークで設計法もMotorola社の資料とかなり違います。
   各種の位相比較器の動作などたいへん詳しいため勉強になりました。
   筆者の遠坂さんは知人です。HAM局のコールサインもお持ちだそうです。
(3)「Product specification 74HCT9046A」、Philips、1999 Jan 11、PDF版
   現在は同じ内容のNexperia版がDLできます。機能・性能の詳細がわかります。
   一般的な電気的仕様や注意事項が書かれているので使う前には一読を。
   簡単な設計例も載っています。内蔵のVCMに興味があれば必読です。

 以上、Blog作成にあたって参考にしましたが購読は必須ではありません。 ご自身の必要に応じ興味があれば読んでみたらどうでしょうか。 図書館の利用などもお薦めです。

(おわり)fm

2018年9月10日月曜日

【回路】7MHz PLL Oscillator (3)

7MHz帯のPLL発振器・その3 VCOの研究編
MC1648Pを使う
 7MHz PLL発振器を題材したPLL活用の第3回です。前回(←リンク)はPLL回路の各要素を概観しました。 今回はたいへん重要なVCOを集中的に扱います。 ループフィルタの設計が適切なら、あとはVCOの「良さ」が出力スペクトラムの「きれいさ」のほとんどを決めていると思っています。

 写真のMC1648Pは非常に古いICです。 1970年代のはじめには登場していました。 しかしPLL回路のVCO用として優れていたため、以後多くの推奨回路に使用例がみられます。 デバイス技術の進歩で改良版も登場していますが中身の回路に大きな変更はないようです。 それだけ優れた設計だったということでしょう。 ここではMC1648Pをあらためて見直し、代替となる回路を探りたいと思います。

                   ☆

PLL回路のVCOに求められるものは
 PLL回路のVCO(電圧制御発振器)としては、電圧または電流と言った電気的な手段で周波数が変えられるような発振器なら何でも良いはずです。 ですからごく常識的なコルピッツ型やハートレー型の発振器でも良いでしょう。 実際、過去に作ってきたPLLではそうした発振回路を採用してきました。 中でもよく使われる回路としてコルピッツ型の一種「変形クラップ型」があって今回もテストしています。 しかし、PLL用にはそうしたポピュラーな発振回路よりもMC1648Pの方がずっと使い易いのです。 流石に長く使われているだけの意味はあるようです。

 きれいな発振出力を得るためには共振回路を持ったVCOに限ります。 HF〜VHF帯ならLC発振器が、UHF帯以上ではストリップラインや誘電体共振器を使います。 場合によっては水晶発振子を使うこともあります。 いずれにしても周波数の可変には可変容量ダイオード(以下バリキャップと表記)を使います。 しかしバリキャップを発振振幅の大きな部分に接続するとダイオードとしての整流作用が働き、自己バイアスがかかるなど問題が発生します。 自己バイアスによって所定の周波数可変範囲が得られない、ループフィルタに電流が流れ込んでPLLの動作に干渉するなどの不都合が起こります。 これをうまくこなす方法もありますが、使いやすさの点ではタンク回路の発振振幅を約1Vppに抑えたMC1648Pに分があるように思いました。

 写真は新旧のMC1648Pで右が新しいものです。右は最近になって購入したものですが安価とは言えず確実な入手も難しいようでした。 MC1648Pのメリットは認めますが、そのものを継続して使うのはあまり得策とは思えません。できたら代替となる回路を検討すべきでしょう。 まずはMC1648Pの動作を見直した上で代替回路を考えたいと思います。

 以下、PLLで発振器を作ろうとすれば役立つかもしれませんが、VCOとして使うのではなくてバリコンで周波数可変するような一般的な自励発振器としてはほかの回路形式の方が優れています。 PLL回路にさして興味がなければこの先はお薦めしません。時間を無駄にしませんように!
                   ☆

MC1648PのVCO
 既出ですがMC1648Pを使ったVCO回路です。 発振専用のICなので内部で発振回路が構成されています。 あとはコイル:Lとコンデンサ:Cを使った共振回路を外付けするだけで確実に発振してくれます。 あまりQの低いコイルはC/Nが悪化するので感心しませんがそれほど難しく考えなくても発振はしてくれます。 特別High-Qにする必要もないです。

 発振周波数の可変はLあるいはCのいずれを変えても可能ですが、電子式に可変したいならCを変えるのが現実的です。 可飽和特性を持ったフェライトコアを使ってコイルを作り、励磁巻線にバイアス電流を流してインダクタンスを可変すると言った方法がない訳ではありません。しかしメリットは少ないでしょう。 バリキャップでキャパシタンスを変える方法が現実的です。  ここではバリキャップとしてFC-52M(富士通)を使いました。 逆バイアス電圧を0〜5V変化させると端子間容量は約140pF〜20pF変化します。

 バリキャップに加わる高周波電圧は1.2Vpp程度です。 逆バイアス電圧が0Vでは僅かに自己整流がありますが、0.5Vも加わればもう起こりません。 従ってバリキャップの容量変化特性から求まる周波数の可変範囲が実現できます。

MC1648Pの内部回路を考える
 MC1648Pの内部回路も含めて発振回路をもう一度見直しましょう。

 左図はMC1648Pの等価回路がわかるように書いた図面です。 内部はたったこれだけの回路でしかありません。 しかも左側の半分近くはバイアス回路が占めており、さらに右側に出力のバッファアンプがあります。 実際の発振回路は中央部分にあるわずか2石で構成されているのです。

 温度特性を良くするとか、発振振幅を一定に保つと言った回路の工夫は見られますが、発振器の本質はたった2石の帰還型発振回路なのです。これなら簡単に代替回路が作れそうに思いませんか?(笑)

MC1648PのVCO:出力波形
 MC1648Pは正弦波で発振していますが、出力波形は矩形波と正弦波が選べます。 Pin4のAGC端子とGND間の抵抗器を省き、コンデンサでバイパスするだけの状態で使うと写真のような矩形波っぽい波形になります。

 Pin4とGND間に10kΩくらいの可変抵抗器を挿入して最適なポイントに調整すると正弦波に近い波形にすることもできます。 ただし発振振幅はやや小さくなります。

 だいたい4.3kΩにすると大きめな発振振幅で正弦波にちかい波形になりました。 ICにはバラツキがあって、最適値は変化しますので波形を見ながら個々に調整すべきでした。
なお、発振そのものは正弦波状なので内部のアンプを通さずTank回路から直接取り出すと正弦波になります。

可変容量ダイオード
 電子的に共振周波数を可変したり微調整する目的で様々な可変容量ダイオードが作られています。 現在では表面実装型が主流になっているようです。

 参考のため手持ちのバリキャップを幾つかを並べてみましたが、見たところは小さな2端子もしくは3端子の電子部品です。普通のダイオードとあまり違いません。 3端子のものは2個が複合されたもので、カソード・コモンのものが多いようです。 これは2つ使って発振電圧による自己整流作用を軽減し周波数の可変特性を改善する方法があるからです。 3端子のものは最初からそのような目的に作られたものです。 ただし直列にすると容量は半減します。 もちろん片側だけ使ったり、2つを並列に使うと言った応用もできます。

 バリキャップには大きく分けて3種類があるようです。 最大容量が20pFくらいの比較的小容量のものはかつてのアナログTVやFMチューナの自動周波数調整(AFC)用でしょう。 最大容量が20〜40pFのものは電子同調式FMチューナあるいはCATVチューナ用です。 CATV用は逆耐電圧が高くなっていて30V程度まで加えて使うものがほとんどのようです。 もう一つにAMラジオの電子同調用があります。 AM放送は周波数が低いため大きな同調容量が必要です。したがって最大容量は400pFくらいあります。 AMラジオだけでなく低い周波数での応用にも重宝します。

 LC共振回路を使った電子機器は減少傾向にあるため、バリキャップにも廃止品が多くなってきました。 完全になくなることはないと思いますが、これからは表面実装型も含めて検討する必要があります。

 なお、電源整流用のダイオードやツェナーダイオードなどをバリキャップの代用に使うことがあります。LEDを使っている例も見たこともあります。 いずれも端子間のキャパシタンスは小さめで、逆電圧であまり大きく変化しません。 そのため周波数の可変範囲は狭いのですが目的次第で活用できることがあります。

FC-52Mと1SV228の実測特性
 左図の赤い線はここで使用しているFC-52Mの実測特性です。 5V以下の電圧でも使いやすい特性です。 バリキャップのためだけに高い電圧を用意する必要がないのは有難いです。
 また、左図の青い線は1SV228の特性です。 1SV228は一つのパッケージにダイオードが2つ入っていますが、片側の特性です。 もし直列に使うならグラフに示した値の半分になります。 この1SV228はFC-52Mの代替候補で現在でも入手できるものです。*1 FC-52Mよりも容量可変範囲は狭いのですが、このPLL発振器に使うには十分な容量変化特性です。 支障なく使えるでしょう。 こうした可変容量ダイオードの特性はLCRメータと可変電圧電源があれば容易に測定できます。

 いずれのダイオードも、より広い容量可変範囲を得るには10Vくらいまで加える必要がありそうです。 しかし発振周波数がHF帯なら5V以下でも十分でしょう。

 このFCシリーズでは最大容量の大きなFC-51M(150pF@Vr=1V)がHF帯でも低い周波数で、FC-53M(45pF@Vr=1V)と54M(25pF@Vr=1V)はHF帯の高い方に向いています。 中波帯や短波帯の低い方にはSVC321(430pF@Vr=1.2V)や1SV134(480pF@Vr=1V)が良いでしょう。 VHF帯には1SV103(CATV用40pF@Vr=3V)や1SV113(34pF@Vr=1V)が向いています。 もちろん、広い可変範囲が必要なければ周波数帯に関係なく容量の小さなバリキャップもVCOに十分使えます。

 残念ながらここで使ったFC-52M(80pF@Vr=1V)はずいぶん前に廃止になっています。 直接代替可能なバリキャップは存在しません。 類似品で代替できますがVCOの特性はあらためて採りなおすことになります。 もちろん1SV228で代替する場合もVCOの特性は再測定になります。 しかし可変電圧電源(9Vの乾電池と10kΩのVRでも良い)とマルチメータ、それに周波数カウンタがあれば再測定は容易です。 無理して同じバリキャップを探すよりも簡単ですから積極的に代替すべきでしょう。

*1:1SV228は面実装型で秋月電子通商にて5個150円で購入。変換基板に実装して測定しました。価格は2018年9月現在のものです。

トランジスタで作るVCO
 MC1648Pの内部を検討して発振回路のコアの部分はたった2石で構成されていることがわかりました。 ただし動作環境の変化などを考えるともう少し検討しておいた方が良いでしょう。

 いくつか検討したところ、トランジスタ4つとダイオード1つの回路が良好でした。調整も容易です。 4つのうち発振に直接寄与するトランジスタは2つです。その2つは特に周波数特性の良いものを選びます。 ここではローコストながら周波数特性の良い高周波用の中華トランジスタ:S9018Hを使ってみました。 さらにバイアス回路へも品種統一の意味で同じS9018Hを2つ使いました。
 バイアス回路の部分は2SC1815のような汎用品でも大丈夫だと思います。しかしS9018Hは安価ですから経済性は悪くありません。 S9018H の足の並びは2SC1815などとは違うので注意します。(下図参照) ダイオードはシリコンの小信号用なら何でも大丈夫です。 ここでは1S2076Aを使いましたが代替候補はいくらでもあります。

 MC1648Pは数10円では買えませんが、S9018Hを4つと汎用ダイオード1つならコストは50円以下です。 性能はむしろ良いくらいですからお薦めできます。 ディスクリートは嫌いでどうしてもIC化したいなら後ほど実例があります。そちらもどうぞ。(笑)

トランジスタで作るVCO:回路図
 このような回路になっています。 Q1とQ2が発振用トランジスタです。 Q3とQ4はQ1とQ2の動作電流を決めるカレントミラー回路です。 またD2はバイアス電圧を得るためのものです。

 使用する周波数帯により動作電流を変えると最適化できます。 だいたい30MHzまでのHF帯なら図のままの回路定数で大丈夫です。 VHF帯以上でも使える回路ですが、その場合はR3を8.2kΩよりもう少し小さくしてQ1とQ2の電流を増やしてやります。 増やしすぎると発振振幅が増大し、バリキャップに加わる発振電圧が過大になります。 念のためQ1のコレクタをオロスコープで観測し1.0〜1.5Vppの発振振幅になるよう加減します。オシロがなければ回路図のままでも十分です。

 この発振回路はS9018HのようにfTの高いトランジスタを使ってコンパクトに製作すれば100MHz以上でも楽々発振できます。 しかもバリキャップの容量を変え、発振周波数が変わっても発振振幅はあまり変化しないのでPLL回路には使い易い発振器(VCO)です。

 発振部のトランジスタはS9018Hに限りません。 低い周波数なら2SC1815でも問題なく発振できます。 もちろん高周波特性が良いトランジスタの方が有利です。 手持ちの中では2SC535、2SC668、2SC1923や2SC2668などが適当でした。

Tr-VCOを7MHzのPLLに使う
 さっそくPLL回路に組み込んでテストしました。 周波数帯は同じく7MHzです。 PLL用のICにはMC145163Pを使いました。 もちろんTC9122Pと74HC4046を組みわせた回路構成でも大丈夫です。

 MC1648PのVCOとほとんど同じですが、S9018Hを使った回路の方が回路自身のノイズは小さめです。 そのためスペクトラムを観測すると10dB近くノイズフロアが低下します。 発振信号近傍の状態はそれほど違いませんが広帯域なノイズが少ないのは評価できると思いました。 これはMC1648Pのように内部の出力アンプを通していないからでしょう。 1段でもアンプを通る回数が増えればどうしてもノイズフロアは上昇します。 MC1648Pは汎用性を持たせる意味でカスコード形式のアンプ+差動増幅のアンプという2段構成なので不利なのでしょう。 それなりのメリットのある回路構成ですがノイズの点では少し不利なようです。

 このようなことから、MC1648Pの入手を試みるまでもなくトランジスタ4石で作ったVCOを第一にお薦めしたいと思います。 国産品のRF用トランジスタでもOKですが中華トランジスタで作ればコスパも抜群です。

Tr-VCOを使った7MHz PLL:回路図
7MHz帯のPLLに採用した例です。 トランジスタを使ったVCOも使い方はMC1648Pと同じです。

 トランジスタ式はAGC回路がないので、温度変化や電源電圧の変動に幾らか弱い傾向があると思います。 しかし、カレントミラー形式にしたので抵抗分圧でバイアス電圧を得る方式よりもずっと安定です。 図では電源経路からのノイズやリプルを軽減する目的でローカル・レギュレータを設けています。 発振出力をきれいにする効果もありそうですが、実験に使っていた安定化電源のDCもきれいだったので極端な違いは見られませんでした。

 この回路例ではMC145163Pで10.240MHzを発振させたので、10kHzステップでしか信号は得られません。 10kHzの間を連続的にカバーしたいなら、このBlog特集の初回(←リンク)にあった様なVXO形式の基準発振器にします。 またMC145163Pの代わりにTC9122P+74HC4046+74HC4060を使った第2回(←リンク)のような回路構成も可能です。 手持ちを有効活用されることを希望します。

 ループフィルタのあとのバッファアンプ(OP-Amp)はLMC6482AINを採用して近代化しました。 すこしローノイズになったように感じます。 ICL7621DCでも大差はなかったので類似のC-MOS OP-Ampならなんでも間に合うかもしれません。 入出力ともレール・トゥ・レール型のOP-Ampを使ってください。

# 詳しい回路説明や、そのほかのパーツについてはPart 1およびPart 2のPLL回路などを参考にして下さい。

Tr-VCOを使った7MHz PLL:特性グラフ
 VCO特性の話しです。 制御電圧対周波数の関係がVCOの特性になります。一旦PLLのループを切り離してVCO部を単独で測定します。 このグラフは上記の7MHz PLLのトランジスタを使ったVCOの測定結果です。 言うまでもありませんが、MC1648Pおよび同タイプのVCOでは類似の特性になります。
 左図は回路図中にあるコンデンサ、C21を変えながら採取した特性です。 C21はコイルに並列になりますので、容量を増やすと周波数が下がるとともに、制御電圧による発振周波数の変化量も抑制されます。 以下Cpとあるのは、回路図のC21のことです。

 バリキャップにはFC-52Mを使っています。 すでに見たバリキャップの電圧と端子容量の特性がそのまま現れたような特性になりますが、実際にはストレー容量やデバイスの端子間容量が存在するため計算から精度よく発振周波数を求めるのは困難です。
 したがって、VCOを試作してから実測するのが現実的でしょう。 量産するような場合はバラツキも考慮する必要があります。 VCOの発振周波数範囲は必ずPLL発振器で発振させたい範囲をカバーしている必要があります。さらにある程度の余裕も必要です。 また、必要以上に周波数の可変範囲が広いVCOはきれいな信号を得にくい傾向があります。
 複数の周波数帯で使いたいなら、一つのVFOで広い周波数範囲をカバーさせるよりも周波数帯ごとに幾つかVCOを切り替える(コイルを切り替えても良い)方法がベターでしょう。

 VCOの特性は:Kvで表されます。 計算式は:Kv=2π(fmax-fmin)/ΔVcです。 単位は(radian/volt)です。 ΔVcと言うのはfmaxになるときの制御電圧:VcとfminになるときのVcとの差電圧です。 このグラフではVc=0V〜10Vまで可変していますが、その範囲の全部が使えるわけではありません。 Vc=0V付近はバリキャップの自己整流による影響が現れやすくなります。 また5Vを超えた部分は周波数変化が少なくなっています。 この様な部分はなるべく使わない様にすべきです。 ここではVc=0.5V〜4.5Vの範囲と考えるのが適当でしょう。ΔVc=4Vになります。 並列のコンデンサ:Cp=47pFとすれば、Vc=0.5Vのとき、fmin=6.847MHzです。 またVc=4.5Vのときはfmax=8.972MHzでした。

したがって、Cp=47pFのとき:
Kv=2π(8.972-6.847)×10^6/(4.5−0.5)=2π(2.125×10^6)/4
 ≒3.338×10^6 ・・・・・(radian/volt)となります。(Cp=C21=47pFのとき)

Cp=33pFのときは:
Kv=2π(9.631-7.131)×10^6/(4.5-0.5)=2π(2.500)×10^6 /4
 ≒3.927×10^6・・・・・(radian/volt)となります。(Cp=C21=33pFのとき)

また、Cp=22pFのときは:
Kv=2π(10.383-7.386)×10^6/(4.5−0.5)=2π(2.997×10^6)/4
 ≒4.708×10^6 ・・・・・(radian/volt)となります。(Cp=C21=22pFのとき)

さらにCpを入れないときは:
Kv=2π(12.328-7.987)×10^6/(4.5−0.5)=2π(4.341×10^6)/4
 ≒6.819×10^6 ・・・・・(radian/volt)となります。(Cp=C21=なしのとき)

ここでは7〜8MHz帯のPLL発振器を作るのが目的です。 従ってCp=47pFが適当です。 全体的にもうすこし周波数を下げたい感じもするので、コイルのインダクタンスを増やすと良さそうです。その場合は特性の再測定が必要です。

 なお、VCOの回路図にはコイル:L1のインダクタンス値が書いてあります。 その値とCpの値、さらにFC-52Mの容量特性から共振周波数が計算できます。 しかし計算値と実測値は一致しません。これはブレッドボードのストレー容量やトランジスタの電極間容量が存在するからです。 周波数の実測に基づき逆の計算から求めるとストレー容量は20pF近くあることがわかります。 これはブレッドボードの分布容量の実測からも十分納得できるストレー容量でした。 プリント基板化するとストレー容量は減少するので注意が必要です。

VCOの定数:Kvは計算からもある程度求めることができますが、現実にはストレー容量などの影響もあるので実測で求めるべきです。 そうすればPLLとしての設計精度は向上します。 場合によっては並列容量:Cpをトリマコンデンサにしてストレー容量の変化を吸収するような設計も必要かも知れません。 しかし手作りの一品料理でしたら実測から求めておくのが現実的でしょう。

 もちろん、まったく新規にVCOを設計するなら、まずは必要な発振周波数の範囲を決めます。 必要なバリキャップの容量可変比は上端周波数と下端周波数の周波数比の2乗ですので、十分な容量変化量が得られるバリキャップを選択します。 例えば5〜6MHzの発振範囲とすれば、周波数比は1.2倍ですから、バリキャップの容量変化比はその2乗の1.44倍以上必要です。 具体例として、例えば0.5V〜4.5Vの変化で、容量が1.44倍以上変化するようなバリキャップを選びます。 その後、バリキャップの容量特性および発振周波数比と下端周波数などからTank回路のインダクタンスや並列容量を計算します。 もちろん、インダクタンス値や並列容量Cpなどは目的の発振周波数において合理的な値の必要があります。 さらに得られた回路定数でVCOを試作し、特性を測定してKvを求めれば完全です。
(追記:2018.09.11)

                   ☆

 MC1648Pの考察と、それを模したトランジスタ式のVCOについて調べました。 あらかたの用途では代替のトランジスタ式VCOで満足できます。 従って、以下はまったくの蛇足なのですがVCOのIC化を試みた記録として紹介しておきます。

μA703を使ったVCO
 実験を始めた当初、MC1648Pは入手難だったので代替を試みたのがこの回路でした。 μA703はフェアチャイルド社のFM-IFアンプ用のICです。 内部構造は非常にシンプルで、上記のトランジスタで作ったVCOをそのままIC化したような構造です。

 実はそれは話が逆で最初はこちらから実験を始めたのです。 その結果がなかなか良かったのでトランジスタ化の方向へ進んだのです。 昔のようにμA703が容易に入手できるならこの回路も良いのですが、すでに過去のデバイスになっていて入手は難しいでしょう。 無理に手に入れようとすれば金銭的な解決になってしまいます。 上記トランジスタ式VCOとはコスパの点でも勝負にならないでしょう。(笑)

μA703を使ったVCO:回路図
 簡単な回路とは言えさすがにICです。 回路はすっきりします。 μA703はFMチューナの世界では定番だったのでしょう。 たくさんのメーカーからセカンドソースが登場しました。

 たとえば東芝のTA7060Pはパッケージ違いの同等品です。 回路図中にあるように接続して使えばそのまま代替できます。 さらにTA7060Pのセカンドソースとしてローム社のBA401がありこちらも同じように使えます。 NECのμPC555AはμA703の互換品でした。 しかしどのICも遠い昔に廃番なので入手は困難です。 稀にオークションに登場するらしいですが入手難から高騰するためとうていお薦めできません。 もしも手持ちがあったなら試してみる程度が適当です。

 MC1648Pを模した回路になっていますが周波数特性はやや劣るようです。 200MHz以上の発振はできないようでした。100MHz以下で使うのが適当でしょう。 できたら50MHz以下が間違いないようです。

TA7069Pを使ったVCO
 TA7069PはRCAのCA3028AもしくはCA3053Aと類似の等価回路になっています。 差動増幅器とバイアス回路からなっており、TA7060Pとも類似ですがFM-IFアンプ専用ではなくてもう少し汎用性があります。

 このTA7069PでもMC1648Pを模した発振回路を構成することができます。 当然ながら上記に書いたCA3028A,etcでも同じことができます。 さらにCA3028AのセカンドソースであるTA7045Mも使えます。

 しかしどのICも古典的すぎるでしょう。 もしたくさん手持ちがあって使うあてもなく持て余しているのでしたら活用の機会かもしれません。 ただし新たに購入してまで使うようなパーツではありません。 周波数特性は上記のμA703を使う例と類似ですので50〜100MHz辺りまでが適当です。
 
【TA7069Pを使ったVCO:回路図
 TA7069Pはこのように使いました。 バイアス回路の一部が内蔵されていないため、外付けで補います。 そのようにすればTA7060Pと同じように使えます。

 何か特別なメリットでもあれば良いのですがこれと言って無さそうでした。 TA7069Pはたまたま昔使った残りがあったので試すことができましたが、これから手に入れても仕方ないでしょう。 TA7060PやμA703よりも使用量の少ないICだったようです。 こちらも手持ちがあれば試す程度が宜しいと思います。

でき上がったVCOの性能はまずまず良好でした。 十分使い物になると思います。

LA1600を使ったVCO
 LA1600はラジオ用のICです。それをVCOに使ったら可哀想かもしれません。 LA1600はスーパー・ヘテロダイン形式のラジオです。 そのため局部発振回路(Local OSC)が内蔵されています。 それをVCOとして使うのです。

 ちょっと可哀想かもしれませんが経済性は悪くありません。 今のところ100円前後で購入できます。 MC1648Pに手を出すよりも安価でしょう。 必要な外付け部品も少ないので使いやすいICでした。 ただ、遊びピンだらけでせっかくの高機能ICがちょっぴり忍びない感じもしました。(笑)

LA1600を使ったVCO:回路図
 LA1600を使ったVCOは経済性だけではないメリットもあります。 内部の等価回路は公開されていないので詳しくわかりませんが、MC1648Pと類似の発振回路になっているように思います。 さらに発振振幅が一定に保たれるような工夫もされているようです。 このため、性能の面から見てもVCOとして悪くないと感じました。

 LA1600はたくさんの回路が内蔵されています。VCOとして使う際は未使用の回路が中途半端に動作しないよう気をつける必要があります。うっかりするとノイズ源になります。 回路図のように使えば大丈夫なようでした。 発振部とも関連があるためRFアンプ部分はノイズ源にならぬよう特に注意が必要です。 IFアンプ以降は単純にピンを遊ばせておけば動作しなくなるようです。

 LA1600はもともと短波帯のラジオが作れます。従って30MHz以下なら動作は確実でしょう。 それ以上の周波数はデバイスのばらつきにより違いがあるようです。 特に高い周波数では確実に発振できるか実験的に確認する必要がありそうでした。

 AMラジオや短波ラジオは同じICで1〜2台も作れば飽きてきます。 LA1600はラジオ作りには便利ですし安価ですから買い溜めているかも知れません。 調べたらまだ10個くらい持っていました。この先LA1600で幾つもラジオを作ることはないでしょう。 VCOへの転用も考えたいと思いました。その方が死蔵するよりずいぶんマシです。

蛇足とは思いますが、LA1600の機能をすべて活かし、局発回路をPLL化したような受信機も作れます。 たとえば、IF周波数=450kHzとして9kHzステップのPLLで局発を構成すれば、シンセサイザ化した中波ラジオが作れます。

                   ☆

 VCO回路に絞って実験してみました。 PLL回路のVCOとしては従来から使われてきた発振回路で十分かも知れません。 ここでテストするまではそう思ってきました。 しかし話の種と思ってMC1648Pを試したところ、そのメリットがわかってきました。 調べたてみたら一つしか持っていなかったので、もう何個か欲しいと思いました。 さっそく購入を試みところ、手には入ったのですが入手性はかなり悪そうでした。 次はもう買えないかも知れません。 これをお薦めするのは躊躇われます。 あるいは面実装型の新型を買う方が良さそうでした。

 そこで代替回路を検討したところ、トランジスタを使った回路が好結果でした。 周波数特性はMC1648Pよりも良いくらいです。 ノイズが少ないのもメリットでしょう。 面実装型でfTの高いトランジスタを使い、極力コンパクトに作ってやれば更に高い周波数のVCOとして期待できます。 うまい代替回路ができて良かったと思っています。

 作った回路はMC1648Pと同じ欠点を持っています。発振振幅を抑えた結果、幾らかノイジーになっているでしょう。しかし実際の評価に於いてはディスクリート回路の有利さからでしょう、MC1648Pよりだいぶローノイズでした。  より高性能なVCOを必要とするケースもあると思いますが、ほとんどの用途で満足できると思います。 必要以上に可変範囲を欲張らないように設計し、なるべくQの高いバリキャップを使うのがベストです。

 VCOの検討が済んだのでPLLの設計に必要な情報は揃いました。 ここまででだいぶ時間が経過しましたが、次回はループフィルタの設計に進みましょう。 合わせて定数選びのコツと言ったところにも触れられたらと思っています。 ではまた。 de JA9TTT/1

つづく)←リンクnm

2018年8月26日日曜日

【回路】7MHz PLL Oscillator (2)

7MHz帯のPLL発振器・その2
 【7MHzのPLL発振器(2)
  PLLの活用を目指したBlogの第2回です。 前回(←リンク)は7MHzのPLL発振器を題材に評価しました。 できたものがどんな性能か見えてきました。 第2回ではPLL発振器の概要をおさらいしたあと、PLLの回路要素を順に辿って行きます。

 写真は7MHzのPLL式発振器です。 今回はMC145163Pを使わず、汎用のHC-MOSとポピュラーなプログラマブル・カウンタ:TC9122P(東芝)を使いました。
 MC145163Pは持っていないけれど、TC9122Pならあるんだけれど・・・と言うのでしたら同じように7MHzのPLL発振器が作れます。 TC9122Pの代わりにTC9198P/Fでも大丈夫です。 少し部品数は増えますが使うICがスリムなのでコンパクトに作れます。 PLLとしての性能もさした違いはありませんでした。

 【7MHzのPLL発振器(2):TC9122P/74HC4046
 第2回のおもな目的は、この回路を作ることではないのですが典型的なPLL回路として載せています。 説明用の例題とも言えます。 だからと言って単なる見本ではなく使い物になります。 上記写真を具体的な回路図にまとめておきました。 MC145163Pがなくても作れる回路例と言うわけです。

 興味を持っていただけたようでしたらPLL回路を作りながら進んでいただければVY-FBだと思います。 前回の製作ではMC145163Pの機能をフルに使ったのでスッキリしていました。 使わないと部品は増えますがなるべくシンプルになるよう選んだので複雑にはなっていません。同じように簡単に作れます。

 10.240MHzのVXO出力から比較基準の10kHzを作る部分には、分周器としてHC-MOSのTC74HC4060APを使いました。 他のHC-MOSカウンタを並べて作ることもできますが、74HC4060なら一つで1/1024の分周ができて便利です。 74HC4060は水晶発振回路も内蔵していますが使わずに外部から与えることになります。 その発振回路の部分はインターフェース回路として利用します。 10.240MHzのVXO回路は前回とまったく同じです。 なお、扱う周波数が10.24MHzと高いためスタンダードC-MOSのCD4060Bは使えません。高速C-MOSの74HCタイプを使います。

 プログラマブル・カウンタにはだいぶ古臭いのですがTC9122Pを使いました。既にディスコンですが持っている人は意外に多いのではないでしょうか? 新規に買おうとすればだいぶ値上がりしていますがまだ何とか手に入ります。 持っているなら貴重品扱いなどせず積極的に使うべきでしょう。そのうち陳腐化して価値も無くなりますので。 ここはTC9198P/Fでも大丈夫ですがこちらもディスコンでしょうね。 ほかに74HCシリーズのカウンタ用ICで構成することもできるのですがICの数がずいぶん増えます。例えば74HC192などを並べて作れます。 しかし、なるべくPLL用に作られているTC9122やTC9198を使うのが良いです。

 ここで使用したTC9122PはMC145163Pに内蔵されているプログラマブル・カウンタほど周波数特性は伸びていません。 電源電圧5Vでは21MHz帯までが良いところです。 電源電圧を7Vまでアップして30MHzあたりまででしょう。 電源電圧をアップしても50MHz帯は無理ですからVHF帯が必要なら周波数変換する形式にします。  TC9198P/Fもほぼ同様です。  ここでは触れませんがTC9198と可変分周プリスケーラで高速カウンタを実現する方法もあります。(注:TC9122Pには3種類くらい世代の異った物があります。古い世代は周波数特性が伸びません。10MHz以下で使うのがせいぜいです)

 位相比較器はCD74HC4046AEに内蔵のもの(タイプⅡ)を使いました。 TC9122Pといえば同じ東芝のTC5081APが相棒の位相比較器かも知れません。 しかし入手は難しいでしょう。それに74HC4046の位相比較器の方が高性能ですからTC5081APを探すまでもないです。 74HC4046なら入手は容易です。 なお、74HC4046は電圧制御発振器:VCMを内蔵していますがここでは使いません。必ず遊び入力ピンの処理をしておきます。(回路図のようにしておけばOKです)

 ループ・フィルタとバッファ・アンプ、及び補助のフィルタは前回の回路と同じ考え方です。回路定数は低インピーダンス型になっています。上記の写真は普通に設計したループフィルタになっていますが、この回路図のように低インピーダンス型の方が良好でした。 OP-Amp.にはナショセミのLMC6482AINを使いました。 インターシルのICL7621DCPAも使えますがいくらかノイジーなようです。 やはり設計の新しいLMC6482AINの方が優れています。

 VCOは前回同様にモトローラのMC1648Pを使っています。これは比較の意味で前回と同じにしただけです。ほかの形式でも良いでしょう。 なお、VCO部分については次回のBlogで詳しく扱いたいと思っています。

 スペクトラムの写真は示しませんが、完成した7MHz PLL発振器の性能はMC145163Pを使ったものと同等です。 位相比較器の方式やVCOの部分が同じなのでほとんど違いはないと言えます。

                   ☆

 【PLL回路のブロック図
  図は典型的なPLL発振器のブロック図です。 上記の7MHz PLL発振器もこれにならっています。

 回路の構成要素は、(1)位相比較器、(2)ループ・フィルタ、(3)電圧制御発振器、(4)プログラマブル・カウンタ(主分周器及びプリスケーラ)、(5)基準発振器及び分周器・・ から成っています。 他の形式のPLL発振器も基本はこれと同じであり、付属回路の有無くらいのものです。

 PLLの設計はパート・1でも書いたように、ひとことで言うとループフィルタの部品定数を決めることに集約されます。 要求された仕様からPLL発振器としての仕様を決めます。 具体的には周波数ステップや周波数切り替えの応答速度などです。 さらに回路の構成要素ごとに、必要な特性が得られるよう細部設計を行ないます。 また、項目によっては事前に試作を行なって実測から特性を求めておく作業も必要でしょう。
  このように要求仕様から決定した項目と、各構成要素の特性から具体的にループフィルタの部品定数を計算します。
 そのようにして作ったPLL回路は確実にロックします。 ただし確実にロックしただけでは不十分なこともあります。そんな時はさらに信号の品質が満足できるよう細部をチューニングして完成させます。

 ループフィルタの設計は文章にすると難しそうに感じますが、実際の作業は意外に単純です。 よほど特殊なPLLでもない限り定型の公式に数値を当てはめれば容易に算出できます。 ただし見慣れぬ単位を持つ数値も多いためいきなり計算式が出てきたら難解でしょう。 まずは構成要素を辿りながら準備運動から始めたいと思います。 構成要素はほとんどがIC化されていますから主にICの説明になります。

 【位相比較器のIC
 PLL発振器は位相同期ループ発振器と言うくらいですから、位相比較器がシステムの「かなめ」になると言えるでしょう。 写真は市販されている位相比較器の例です。

 位相比較器は汎用ロジックICを組み合わせて構成することも可能ですが、いまでは専用のICを使うと便利でしょう。 右下のMC4044Pは初期のIC化された位相比較器です。 内部はTTL構造で、比較的高速で動作するため今でも稀に特殊な用途で使われることがあります。 しかし、使いにくいのであえて選択する意味はないと思います。すでに廃れているとも言えるでしょう。

 位相比較器の重要な特性は、位相比較器ゲインでKpの記号で表されます。 2つの信号の位相差がどれくらいの電圧として取り出されるのかというのが位相比較器ゲイン:Kpになります。 従ってKpの単位は出力電圧/位相差となります。 もちろんこのタイプの位相比較器の出力はパルス波形ですので、ループフィルタを通って平滑化された後の電圧と位相差の関係になります。

 MC4044PのKpは:Kp=(2・Vbe)/4π≒1.4/12.57≒0.111(Volt/radian)です。

なおVbeというにはシリコン・トランジスタのベースエミッタ間順方向電圧です。約0.7Vと言うことになります。 いまどきMC4044Pを使うケースはまず無いためこの数字は忘れても構いません。 しかし万一使う必要が生じた時のために書いておきました。 なぜこのような数字になるのかはMC4044Pのデータシートに詳しく書いてあります。

 ほかのIC、CD4046BE、CD74HC4046AE、TC5081AP、 SC371004の位相比較器は基本的に同じ特性ですがMC4044Pとはかなり違います。 次項で詳しく見てみましょう。

参考:CD4046BEには2種類、CD74HC4046AEには3種類の位相比較器が内蔵されています。詳しくはそれぞれのデータシートを見てください。 このBlogで扱っているPLL発振器(周波数シンセサイザ)の用途ではそのうちタイプⅡという位相比較器を使うことがほとんどです。 ここではその前提で話を進めます。 なお、タイプの異なる位相比較器ではKpの値も異なります。

 【タイプⅡ型・位相比較器の動作について
 出力周波数の範囲が広いPLL発振器には左図のような位相比較器が使われています。 周波数範囲が「狭い」あるいは「広い」の定義は漠然としていますが、例えば可変周波型水晶発振器:VCXOにロックを掛けるようなPLL発振器は狭い方の例です。せいぜい数kHz以内の範囲でロックさせようと言うものです。

 ここで製作している発振器は7〜8MHzと約1MHzの範囲を10kHzおきに広範囲に発振させようとするものです。 広い方の例といえるでしょう。 左図のタイプの位相比較器は、図右下にあるように2つの入力端子間の位相差に従った出力電圧が得られるだけでなく、周波数の高低も比較することができます。 そのため、広範な周波数可変範囲を持った電圧制御発振器:VCOと組み合わせても必ずロックできるPLLが作くれます。

 CD4046Bには他にイクスクルーシブ・ORゲートを使った位相比較器(Type Ⅰ)があり、さらに74HC4046AにはR-Sフリップ・フロップを使った位相比較器(Type Ⅲ)も内蔵されています。しかしこれらはどちらかと言えば特殊な用途で効果を発揮するものです。 ここではType Ⅱを使う前提で話を進めたいと思っています。 三つの中でType Ⅱがいちばん汎用性があります。(欠点もあるのですが・・・)

  4046Bや74HC4046のType Ⅱ型位相比較器の位相比較器ゲイン:Kpは
 Kp=(Vdd-Vss)/4π≒5/12.57≒0.398(Volt/radian)です。

 なおVddは位相比較器の電源ピンの電圧でVssはGNDピンの電圧です。 従って電源電圧が異なる時は再計算します。 例えばVdd=7Vとすれば:Kp≒0.557(Volt/radian)となります。
 電源電圧Vdd=5Vで使うケースがほとんどなので、位相比較器ゲイン:Kp≒0.4 (Volt/radian)は覚えておいて損のない数字かもしれません。 しかし意味さえわかっていれば簡単に計算はできますけれど。(笑)

上記のことは、C-MOS構造のPLL用ICであるMC145163Pなど多くのPLL用LSIに内蔵されている位相比較器に於いても同様です。 もちろんTC5081APでも同じです。 すなわち、Vdd=5Vで使えば:  Kp=0.398 (V/rad) です。

参考:PLL回路では弧度法で。
 PLL回路における角度の表記は基本的にラジアン(Radian)を使います。 ラジアンと言う単位は電気関係のお方にはお馴染みだと思います。 しかし生活では馴染みのない単位ですから一般にはピンとこないかも知れません。
 簡単に言うと円の360度が2πラジアンです。 πはお馴染みの円周率:3.1415926・・・ですから、1ラジアンは:1(radian)≒57.3度となります。  なぜこうした単位を使うのかと言う話しは冗長になるので省きますが、もし興味があれば「弧度法」(←リンク)を検索ワードに研究されてださい。

 【プログラマブル・カウンタのIC
 PLL発振器の出力周波数は、位相比較器の比較周波数とプログラマブル・カウンタ(可変分周比カウンタ)によって決定されます。 出力周波数をfo、比較周波数をfr、分周数をNとすれば: fo=fr×Nとなります。 Nは一般に正の整数ですが、フラクショナルN型という分数Nが可能なPLLの方式もあります。(フラクショナル=分数という意味)

 いま、比較周波数fr=10kHzとします。 N=700とすれば、出力周波数foは:fo=10×700=7,000(kHz)となります。 Nを700から順次大きくしてゆけば、発振周波数は10kHzずつ増加して行きます。

 プログラマブル・カウンタは汎用ロジックICのうち、プリセット可能なダウンカウンタがあれば構成できます。 マイコン以前の時代は10進数でプリセットできるカウンタがよく使われました。 写真のMC4016Pはその一つですが、高価なICだったので実際に使用例を見た覚えはありません。 一般には標準TTL-ICの74192がよく使われていました。 マイコンで設定する場合はバイナリ・カウンタの方が便利でしょう。 その場合は74191の方が良いのですが、いまどきTTLの時代でもないので高速C-MOSの74HC191あたりを使うことになるでしょうか。 アップカウンタの74HC161を使う方法もありますが、数値の設定が直感的でないためマイコンを併用しないとわかりにくいです。

 分周数が少ないうちは良いのですが、多くなると汎用ICでは必要なチップの数が増えてしまいます。 配線も面倒になることから、PLL発振器に向いた専用のプログラマブル・カウンタが作られました。 写真のTC9122PやTC9198FはそうしたICです。 これらのICも入手難になってきたことから、再び汎用のロジックICで構成する必要が出てきたのかも知れませんね。 プログラマブル・カウンタの設定や周波数の表示にマイコンの助けも借りればスマートにできると思います。今の時代ですからハードで何でも解決するのではなく、ソフトの助けも借りる方が製作はずっと容易です。

 【電圧制御発振器・VCO/VCMのIC
 写真は電圧制御発振器のICです。 電圧で何を制御するのかと言えば「発振周波数」です。

 電圧制御発振器の形式としては大きく分けて2つがあります。 LC共振回路の共振周波数を電圧によって変える方法と、CR回路の充放電を電圧で制御して発振周期・・・逆数を取れば周波数ですが・・・を変える方法です。 前者を一般にVCO(Voltage Controlled Oscillator)と言い、後者もVCOの一種に違いはありませんが、発振方式の違いを区別する意味からVCM(Voltage Controlled Multivibrator)と呼ばれます。

 MC1648Pは多くのVCO回路例で見かけますが、それ自体は単なる発振回路のICです。 発振周波数は外付けするコイル:Lとコンデンサ:Cの共振周波数で決まります。 そのうちコンデンサ:Cの方に可変容量ダイオード(通称:バリキャップ:Vari-Cap)を使うことで電圧により発振周波数をコントロールできる発振器になります。  蛇足とは思いますが、可変容量ダイオードとは端子間に加わる逆方向電圧によって端子間の静電容量(キャパシタンス)が変化するダイオードです。電気的に容量を変えられるバリコンのような半導体です。

 CD4046BEとCD74HC4046AEは位相比較器のところで既出ですが、これらのICには位相比較器のほかにVCMが内蔵さています。 内蔵VCMの周波数範囲はスタンダードC-MOSの4046Bは1MHzくらいまで、高速C-MOSの74HC4046では20MHzあたりまで発振させることができます。 しかし、その出力はお世辞にも綺麗なスペクトラムとは言えず、少なくとも無線通信のように信号の品質を要求される用途には使うことができません。

 過去に実験したことがあったので初めからVCMには期待していませんでした。 しかし74HC4046のVCMなら7MHz帯のPLL発振器が簡単に作れるので、工夫でカバーできないかと新たな期待を込めてやってみました。 もちろん周波数はうまくロックしてくれます。 しかし期待は見事に打ち砕かれました。 スペクトラムを見るまでもなく、受信機(CWモード)で聞いてみれば実用にならないことがはすぐわかります。ジッターが酷いためずいぶん濁ったトーンです。 スペアナの画面とにらめっこで種々設計を変えて試したところで解決には至りません。やはり通信系の信号源としては不適当という結論が妥当でしょう。 発振させたあとでたくさん分周するといった工夫でもすればそこそこ使えるようにはなります。しかしそれでは高いの周波数の発生はできません。 従って、ここでは4046B/HC4046系のICに内蔵れたVCMは使いません(使えません)。

 IC化されたVCMはまだ他にもあって、例えばモトローラのMC4024P(写真)や74シリーズTTL-ICの74124(74S124や74LS124もある)があります。 試してみると大同小異でいずれも無線通信関係に使うのは不適当でした。  高級な測定器の中にはVCMを信号源に使った例も見たことがあって、良い信号品質を得ているようなのでVCMが本質的にダメな訳ではないと思います。VCMなら磁気的な誘導を拾いやすいコイルを使わずに作れると言ったメリットもあります。 しかしLC回路のような共振器を使ったVCOより不利なことは否めないようでした。

 電圧制御発振器:VCOの特性は非常に重要です。 PLL発振器の出力信号の品質をほとんど決めるることになります。 どのような回路形式が最適なのか十分吟味したくなります。 ここでは一旦おしまいにしてあらためて扱うことにします。

 【複合機能のPLL用LSI
 機能説明の都合もあって、PLL発振器を構成する各部分をそれぞれ個々に扱ってきました。 しかし、特定の用途には機能の幾つかを纏めたICの方が使い易いです。

 PLLが高級な通信機や測定器などに使われていたころなら、モトローラ社の特殊なPLL用ICをたくさん並べた設計でもよかったのでしょう。 しかしコスト低減や小型化には向きません。 そこでより集積度を高めた専用のICが求められるようになりました。

 ちょうど、C-MOS ICが普及しはじめたころ車載CBトランシーバの輸出ブームが起こりました。 最初のころは水晶発振子を並べて多チャンネル化していました。 高価な水晶発振子は少しでも減らしたいところです。 そこでC-MOSを使ったPLL用のICが作られるようになりました。 C-MOSは消費電力が少なく高集積度の実現が容易だったからです。専用のC-MOS ICも量産効果でコストダウンできたのでしょう。 先に紹介したTC9122PやTC5081Pはそうした目的のICだった筈です。(これらは後に汎用に使われるようになりました)

 さらに集積化して基準発振器や基準分周器のほか、プログラマブル・カウンタ、そして位相比較器まで内蔵するようになります。 写真のNDC40013やLC7110はCBトランシーバを目的に作られたPLL用のLSIです。写真にはありませんが沖電気のMSM5807もジャンクのPLLユニットに使われていたので有名なPLL用LSIでした。 これらはVCO回路を除きPLL発振器に必要な機能のほとんどが集積されています。  性能はだいぶ違いますがMC145163Pも類似の目的ではないでしょうか。 また、CATVの発達やFM/AMラジオのデジタル選局などの目的でPLL方式の専用LSIが登場しています。 MB1504P、NJW1508、そしてTC9256Pはそのような用途のPLL用LSIです。

 こうした特定用途向けのPLL用も汎用に使えることがあります。 ただしCB用に作られた初期のC-MOS ICはプログラマブル・カウンタの上限周波数が低いのが欠点です。 せいぜい2MHzあたりまでしか扱えません。 7MHzのPLL発振器を作るのでさえプリスケーラや周波数変換が必要です。 死蔵しては勿体ないのですが回路を煩雑化させてまで使うメリットは少なそうなので見切りをつけても良いかも知れません。 逆に、MB1504やNJW1508はそれ単体でVHF〜UHFまで扱えるプリスケーラが内蔵されています。 上手に使えばマイクロ帯の機器にも活用できそうです。 何れにしてもPLL発振器の基本は同じですから設計法は押さえておきたいところです。

まだまだ続きますが一区切りがついたところでコーヒーブレークにでも致しましょう。 今日はこのあたりにしておきたいと思います。

                 ☆  ☆

 PLL回路を要素に分けて見てきました。 この中で位相比較器の定数、位相比較器ゲイン:Kpはこの先の設計で必ず使います。 ほかに、VCOの定数、VCO感度:Kvも重要な数字ですが、これは次回のテーマでもあります。 回路構成を要素ごとに詳しく扱っているとなかなか先に進みませんが出来上がった設計例を並べただけではあまり応用は利きません。 「周波数を変えたかったのでカットアンドトライで何とかでっち上げた」と言うような話も聞きます。 やはり基本的なことはきちんと理解しておきたいものです。 わかって設計すればトラブルが起こった際の対処も容易になるでしょう。

 以前はPLLを使って色々な発振器を作りました。 DDSモジュールが安価になったことから価値は薄れた感じもします。 しかしDDSを持ち出すほど細かい周波数ステップは必要なければPLL発振器の出番もありえます。 手持ちの部品を活用する意味からも見直したいと思っています。 DDSとコラボするような設計だってあります。 まだまだ使える技術でしょう。 次回は電圧制御発振器:VCOを集中的に扱います。 ではまた。 de JA9TTT/1

つづく)←リンクfm

2018年8月11日土曜日

【回路】7MHz PLL Oscillator (1)

7MHz帯のPLL発振器:その1
各種PLL用IC:Collection of PLL ICs
  これから何回かPLLをやろうと思います。何か必然性があって始めるわけじゃありません。 あえて言えばデバイス活用と設計法の纏めが目的と言ったところでしょうか。
 「何かにとっても役に立つ」などと言うつもりはありません。お暇でもあればお付き合い下さい。 このところ色々やっていて奥が深くてこれは面白いと思ったのでBlogにしました。先は急がないのでぼちぼちやります。 一応みなさんお好きなRF回路です。(笑) まずはイントロ編から。

                   ☆
 
 のっけから昔話になって恐縮ですが、初めて作った水晶発振器は6CB6と言う真空管を使った変形ピアース型だったように思います。  3.5MHzのFT-243型水晶を使い7MHzを得ていました。それで7MHzの送信機を作りました。

 しばらくは真空管を使った発振器の時代が続きましたが、やがてトランジスタを使うようになります。 特に受信系は半導体化したいと思いました。 ただ、当時のゲルマニウム・トランジスタは性能が悪くて苦労した記憶ばかり思い出されます。 そもそもウデも悪かったので苦労したのだと思いますが水晶発振子のアクティビティが低かったのも理由ではないかと思っているのです。hi

  オーディオも好きでしたがやがて無線の方向へ傾倒したので以来ずっと発振回路や発振素子は興味の対象でした。 周波数が安定していて任意の周波数が得られる発振器も研究テーマの一つです。 自励発振器は周波数の自由度はあっても良好な周波数安定度を得るのは至難です。 さりとて水晶発振では自由は利かず・・・ではVXOはと言えば今ほど水晶発振子が良くなかったようで意外に難しいものでした。 可変範囲を欲張ったのもマズかったのでしょう。

                   ☆

 PLL:Phase Locked Loop(位相同期発振器)という発振回路を目にしたのは1970年代の初めです。 かなり難しい内容だったのでほとんど理解できなかったと思います。 自動制御の理論もまだ習ってはいませんでした。  それが何をやろうとしているかはおぼろげにわかっても、ではどうしたら実現できるのかと言う部分は謎でしかなかったのです。 モトローラ社が積極的に推進していた印象があって、同社の特殊なPLL用ICを使った回路は試したくても入手困難かつ高価なので手の出せない難物だった記憶があります。(写真はパーツボックスにあったPLL関係IC)

 自ら試すことができるようになったのは数年後に輸出用CBトランシーバにPLLの専用ICが使われるようになってからでした。 いまのDDS発振器のように小刻みな周波数を得ることはできませんが、それでもかなり自在に周波数の安定した発振ができるようになりとても嬉しかったものです。 その後、CBブームも去って信越電機商会(*1)にジャンクのPLLユニットが登場します。 それを切っ掛けに興味を持った自作HAMも多かったようでした。 CQ誌に何度も活用記事が登場したのはご存知の通りです。 *1:いまの秋月電子通商

                  ☆  ☆

7MHz帯のPLL発振器
 発振器は無線通信には欠かせません。 これはアナログ式であろうとデジタル式であろうとも重要さは同じでしょう。  すでにDDSや新世代のPLL式専用チップも登場しており、初めの写真のような従来型のPLL用ICは時代遅れでしょうか。 そろそろ懐かしい技術になりつつあるのかも知れません。

 ここでは7MHz帯のPLLを題材としてシンプルなPLL式発振器を試作してみます。 死蔵されつつあるPLL用ICの活用法を纏めておく機会にしたいと思います。 用途によっては従来型PLLの技術を頼った方がうまく行くこともあります。

 PLL発振器は周波数が可変できてしかも安定度の高い発振器です。 概略の仕様は:発振周波数範囲=7〜8MHz、周波数ステップ=10kHz・・・とします。 ただし、各10kHzステップの間は連続可変式として自在に設定できるようにしました。 従って7MHzから8MHz(*2)の間を隙間なくカバーでき、水晶発振器なみの周波数安定度を持った発振器になります。 典型的な用途としては7MHz帯のCW送信機やAM送信機のVFOがあるほか受信機の局発回路なども考えられましょう。 *2:正しくは、7.990MHzまでですが、スイッチを増やせば8.000MHz以上も可です。

写真は試作した7MHz帯のPLL発振器。 試作はブレッドボードが手軽ですが実用品はコンパクトに製作して良くシールドする必要があります。

 他の周波数帯への変更も難しくありません。 ほぼ同じ回路図のままでHF帯の各HAMバンド対応の発振器になります。 ただし、各バンドごと最適化のため回路定数の変更は必要です。 さらに50MHz帯用には電源電圧のアップを要しますがHF帯とほぼ同じように製作できます。 144MHz帯用はHF帯に周波数変換する方式が適当でしょう。  いずれにしても回路定数を最適化するには少しだけ計算が必要です。 しかしその計算は高度なものではありません。 四則演算(加減乗除)ができれば誰にでもできます。 筆算では位取りを間違いやすいので算盤や電卓を使ってください。(笑)

 今回(Part 1)は手始めとして事前に設計の済んでいる7MHz帯のPLL式発振器を試作し、出力信号を観測するところまでを扱います。どんなものが作れるのかまずは実際にやってみましょう。 PLL回路を構成する各回路要素の検討と詳しい設計の話しは続編で予定します。 いくらか時代遅れに感じるかも知れませんが、有用性がなくなった訳ではありません。 RF回路の基礎技術の一つとして良く研究しておけばいつか役立つこともあるでしょう。 せっかくここまでお読みいただいたのでしたら、この先もお付き合いください。 PLLに秘伝など必要ありません。誰でも面白いようにロックするPLLが作れます。(笑)

MC145163P・・高機能なPLL用IC
 MC145163PというICはPLL用のLSIとしてかなり後発でした。 PLL化されたCBトランシーバの輸出が盛んだった当時には存在しませんでした。 しかし後発なので機能は充実しており性能も優秀です。

 ここではなるべく簡略にPLL回路を試すことを目標にしています。  高機能なMC145163Pを使って部品数を減らしました。 28ピンの大きなICですが、外付けで必要なものは電圧制御発振器:VCOくらいです。 すっきりしたPLL回路が実現できます。 活用可能な周波数範囲を決める内蔵の「プログラマブル・カウンタ」の上限周波数もVdd=5Vのとき25MHz(標準)と高くなっています。 それ以上の周波数ではプリスケーラを使う必要も出てきますが、必要最小限の分周数で済むためループゲインを消費しないと言ったメリットがあります。 これ一つで色々試せるので便利なPLL用LSIだと思います。

 残念ながらMC145163Pはディスコン(Discontinued:廃止品)です。 まだなんとか手に入るようなので幾つか持っていると自作無線機の幅が広がるでしょう。  以前は比較的高価なICでしたが時代遅れになったからでしょうか? いくらか値崩れ気味のようです。

写真は基準発振の10.24MHzをVXO化する以前のものです。MC145163Pに内蔵の発振回路で水晶発振させています。後ほど外付け回路でVXO化してMC145163Pに与えるよう変更しました。

# まずはMC145163Pで始めますが、後ほどほかのPLL用ICを使った検討もしておきましょう。(Part 3あたり?)

 【MC145163Pの機能
 MC145163Pの内部回路ブロック図です。

 基準となる水晶発振器とそれを分周して比較周波数を得るための「リファレンス・カウンタ」が内蔵されています。 リファレンス・カウンタの分周比は1/512、1/1024、1/2048、1/4096から選べます。

 発振回路のバイアス用帰還抵抗は内蔵ですが負荷容量(2個)は外付けです。 その負荷容量を可変することにより周波数合わせを行ないます。 外部の発振器から基準周波数を与えることもできす。 一例ですが、10.24MHzの水晶発振子を使い1/1024の分周を選ぶと比較周波数は10kHzとなり、10kHz刻みに発振するPLL式の発振器が作れます。

 VCOからの信号を分周する「プログラマブル・カウンタ」は4桁のBCDコードで設定します。分周数はN=3〜9999が設定できます。 無線での用途の場合、あまり小さなNに設定するケースはまれだと思われますが、それでも数1000チャネルの周波数切り替えができる発振器が作れます。 PLL式発振器の出力周波数は比較周波数×分周数です。 いま、比較周波数が10kHzとすれば、分周数:N=700なら発振周波数は700×10=7,000kHz (=7MHz)となります。

 ほかに重要な機能として位相比較器が内蔵されています。 残念ながらループフィルタ用のアンプは付いていません。 従ってアクティブタイプのループフィルタを構成したい時には外付けになります。 あまり使われないのかもしれませんが、同社のMC4044タイプのような形式の位相比較器+ループフィルタを構成することもできるようです。  この部分には ロック外れを検知する機能があり万一の誤動作の時に発振を停止させることができます。

 左図には簡単な機能説明などを記入してあります。 この資料だけで完全な設計ができる訳ではありませんが下記の回路を試すには十分でしょう。 ネットの検索で詳しいデータシート(和文)が入手できるので、MC145163Pを手に入れたなら機会を見てダウンロードしておくと役立ちます。

7MHz用PLL発振器・回路図
 さっそく製作実例です。 最初に決めておいた仕様が実現できるような回路になっています。(2018.08.22:Ver.1.0.1に改版)

 電圧制御発振器:VCO回路はトランジスタやFETを使って構成することもできますが、モトローラ社の専用ICである:MC1648Pを使いました。VCO専用のICを使うことで製作の再現性は向上します。 ただしMC1648Pは入手しにくいかも知れません。 同種の改良版のICがONセミ社で販売されています。

 周波数の可変にはバリキャップ:FC-52M(富士通)を使います。 FC-52Mは廃止品なので入手難ですから秋月電子通商で売られている1SV228(秋月で5個150円)などで代替します。 代替すると少し設計が変わりますが、とりあえずそのまま試しても良いでしょう。うまく周波数ロックするはずです。 1SV228は2素子複合型ですが、片側のみ単独で使います。他方は遊ばせておきます。

 VCO出力に使ってあるTT1-6(MCL:mini circuits lab.社製)というRFトランスはあまり安い部品ではありません。ここでは試作を手っ取り早く行なうために使いました。 フェライトビーズ:FB-801-#43にφ0.16mmのポリウレタン電線を6回トリファイラ巻きしたものでそっくり代替できます。 2SK544Fは2SK241GRもしくは2SK439F(ピン配置は要注意)で代替できます。この回路には2SK19、2SK192A、BF256BやJ310は適していません。

 最初は10.24MHzの基準発振にMC145163Pに内蔵の発振回路を使いました。 しかし、この部分を可変周波型水晶発振器:VXO化するのは少し難しいようです。(できない訳ではありません) そこで動作が確実で実績のある外付けのVXO回路を使うことにしました。 この基準発振器の周波数を変えることによって10kHzステップの間を自在に可変するわけです。 2SC2668YでVXO発振させ2SK544FでバッファしてからMC145163Pに与えます。

 このVXO回路は周波数安定度が重要です。しかし周波数の可変範囲はわずか15kHzほど(10.24MHzに対して約0.14%)と狭いためたいへん良好です。 無理にたくさん周波数を引っ張ったVXOとは違い普通の水晶発振器と同等の周波数安定度が得られます。 従って最終的に得られる7MHz帯のPLL発振出力も安定度の高いものになっています。  発振回路の2SC2668Yは2SC1923Yなど高周波小信号用のトランジスタで代替できます。

参考:10.24MHzの水晶発振子はaitendoなどで購入できます。同店で売られている水晶発振子(HC-49/US)はアクティビティにバラツキがあるのでうまく発振できない時は幾つか交換してみます。

 MC145163Pの位相比較器から出力されるのはパルス波形です。これを平滑化してVCO回路のバリキャップに加えます。 この平滑回路は「ループ・フィルタ」と呼ばれるものです。 回路としては簡単なローパスフィルタそのものです。 PLL回路の設計は最終的にはループ・フィルタの設計に帰結するとも言えるほど重要なものです。 ここでは設計済みですのでこのまま作れば支障なく動作してくれます。 低インピーダンス型の設計になっています。

 ループフィルタとバリキャップとの間には2段のバッファアンプを入れてあります。 このようにするとVCOとの干渉が断てるので有利ですがアンプ自身にもわずかなノイズがあるためC/Nの点では幾らか不利になります。 しかしそれに勝るメリットがありますから入れておくことにします。

 ここではICL7621DCPAというIntersil社(現:Renesas Electronics社)のDual C-MOS OP-Amp.を使いました。 手持ちがあったので使いましたが、ICL7621はだいぶ旧式かも知れません。 5Vの単電源で使用できレール・トゥ・レール入出力特性を持った2回路入りOP-Amp.ならたいていの物が使えます。 新たに購入するのでしたらLMC6482AIN(秋月で@180円)が推奨品です。

 【7MHz PLLのスペクトラム・1
 各部の説明の前にこの発振器で得られた信号のスペクトラムを観測しておきます。 まずは、信号の上下5kHzずつ、全体で10kHzの範囲で観測してみます。

 よくできた水晶発振器と比べると、一見してPLL式の発振器であることがわかります。 十分シャープなスペクトラムが得られてはいますが、どうしても裾野を引く特性になります。 この例では+1kHz離れたところで-67dBですからなかなか良好です。 これは-78dBc/Hzくらいですが、キャリヤから1kHzのポイントであることに注目してください。10kHz離れるとさらに20dBくらい下がります。

 実際この信号をCWモードの受信機で聞いてみても綺麗なシングルトーンとして聞こえます。 ダメなPLLだとスペアナで見るまでもなく、受信機で聞いただけであたかもブザーのような濁った音色になるので簡単にわかります。

 位相比較器のデッドゾーンからできるだけ逃れるためループフィルタおよび周りの回路を低インピーダンスに設計しています。 裾野の部分も滑らかに落ちていますのでループフィルタ部分の設計に問題のないことがわかります。

 【7MHz PLLのスペクトラム・2
 信号の上下50kHzずつ、全体で100kHzの幅で観測しています。 測定系のノイズフロアはこの状態で信号のピークから見て-80dBくらいです。 特にスプリアスも見られずたいへん綺麗です。

 ループフィルタの設計が良くないとリファレンスの漏れが発生します。リファレンス・フィードスルーという現象です。 このPLLではリファレンスは10kHzですから、そのような場合には主信号の上下に10kHzおきのスプリアスが見られるようになります。 まったく見られませんのでうまくいっている証拠です。 漏れ出るリファレンス成分を減衰させるようなフィルタが追加してあるのも効果的なのでしょう。

 【7MHz PLLのスペクトラム・3
 さらに拡大して信号の上下500kHz、全体では1MHzの幅で観測してみました。 このくらいの周波数スパンで観測すると出来の良くないDDS発振器などではそろそろスプリアスが引っ掛かるようになります。

 このPLLの場合、信号のごく近傍はともかくこの範囲に発生するスプリアスの要因はないためとても綺麗でした。 DDS発振器のスプリアスを嫌ってPLLと組み合わせて信号をクリーニングすると言った回路手法も高級な機器では見られます。こうした特性を狙ってのことなのでしょう。 そのような意味で従来型のPLLも捨てがたいものがあると思います。目的によっては非常に有効な回路です。

 【7MHz PLLのスプリアス
 VCOに使ったMC1648Pの出力は基本的に矩形波です。 ただし、発振振幅を制御するAGCの効き方を調整すると正弦波に近づけることができます。ベストポイントは個々に調整が必要で、上記回路図のR11:4.3kΩで加減します。 この例では少し発振振幅を欲張ったためか2〜5次の高調波が多めに見えています。

 VCOの後は広帯域な増幅器で、まだ何のフィルタも入れていないので高調波が多いのはやむを得ません。 CW送信機に使う場合、何段かC級増幅したあと良く切れるローパスフィルタを入れます。  その部分で十分に除去できるのでこの段階では少々高調波があっても支障はありません。 受信機の局発に使う場合はスプリアスを十分落とす方が良いのでπ型2段くらいのLPFを付加しておきます。

 10.24MHzの漏れがいくらか見えますが、VCOの後の広帯域アンプ(2SK544F)への直接飛び込みのようでした。測定プローブへの結合もあるようです。 実用する際にはリファレンスの部分を独立させてシールドしておくと良さそうです。 そうすれば漏れはほとんど感じられなくなります。

 【MC1648Pを使ったVCO
 VCOに使ったMC1648Pはもはや古典的なICです。 しかしLC発振回路の周波数をバリキャップで可変する形式のVCOが確実に作れるためなかなか重宝です。

 良いICなのですがあまり使われなかったように思います。 それほど使われなかった理由は2つあると思っています。 一つはコストです。 大して高機能でもないのにMC1648Pはだいぶ高価なICでした。 これを使わなくてもVCOは作れます。 そうなると使用量が増えないのでコストも下がらなかったものと思います。 もう一つは発振出力のC/Nが良くないと言われています。 すでに見てきたような発振スペクトラムが得られますから、必ずしも劣っているとは思いません。 しかしトランジスタやFETで「上手に」作ったVCOならもう少し良いC/Nが期待できるでしょう。

 MC1648Pは発振振幅を抑えることによりバリキャップでの自己整流が発生しないよう考えられています。それだけ使い易くできている訳です。 しかし発振振幅を抑えた副作用でLCタンク回路の蓄積エネルギーが小さくなってしまいC/Nの点で不利になったようです。

 幾らか欠点はありますが一定の性能が保証されたVCOが確実に作れるというメリットは大きいので使ってみました。 すでにディスコンのデバイスですが表面実装型の改良型が登場しています。 性能も向上しているのでプロフェッショナルな用途にはそちらを使うべきでしょう。

のちほど入手容易なパーツを使ってMC1648Pの代替回路を試みます。

 【ループフィルタとバッファ・アンプ
 ループフィルタの部分は位相比較器(フェーズ・ディテクタ:Phase Detector : PDと略)と不可分の回路です。

 しかしここではPDはMC145163Pに内蔵されていますから独立した部品としては存在しません。 位相比較器:PDの特性もPLLの性能に大きく影響するのでとても重要です。

 幸いMC145163PのPDはなかなか優秀なようでした。 他のPDと比較しても何ら遜色のない・・むしろ優秀なくらいの性能です。 MC145163Pは後発のPLL用ICですから設計が新しくて内部のC-MOSが高速だからでしょう。

 ループフィルタは一種のローパスフィルタです。 あるいは平滑回路とも言えるものです。 位相比較器からの出力はパルス幅が2つの入力信号の位相差に比例したパルス波形として得られます。 それを平均化して得られた直流的な電位(電圧)を電圧制御発振器:VCO回路・・・具体的にはバリキャップ・・・に加えて周波数(位相)を制御します。

 可変容量ダイオード:Vari-Capを使ったVCO回路では自身の発振電圧がダイオードそのものにも加わっています。 バリキャップ(元もとは商品名でした)とは言っても、本質はシリコンダイオードそのものです。順方向電圧を超える発振電圧が端子間に加われば整流されて電流が流れます。 この電流がループフィルタの部分に流れ込むと制御電圧の変動をまねき、それを間欠的に補正するような動作が始まります。 この動作はPLLの信号純度を損なうため注意すべきす。

 ではどうすべきか? この回路例のようにバリキャップとループフィルタの間にOP-Amp.を使ったバッファアンプを置くことで影響をなくすことができます。 こうしたバッファアンプは原理上は必要ないものですが、性能を改善する効果があります。 発振にMC1648Pを使いましたのでバッファアンプは必ずしも必要なさそうです。しかし実際には制御電圧が小さくなってくると影響が現れはじめます。 さらに別の形式のVCOを試すことも考えて付けておきました。

 電源電圧は+5Vだけですから、バッファアンプには片電源だけでも動作する形式のOP-Amp.を使います。 また電源電圧はわずか5Vと小さいので出力電圧が電源電圧の範囲いっぱいに振れる入出力が「レール・トゥ・レール型」のOP-Amp.を選びます。 条件に合うOP-Amp.は各種発売されていて選択に困るほどですができるだけローノイズな製品を選びたいものです。 容量性の負荷で発振しにくいOP-ampと言うのも条件です。 ICL7621DCPAはそう言う意味ではかなり旧式でしょう。しかし写真の程度のスペクトラムは得られますから実用上の支障はあまりなさそうでした。 もちろん新しいタイプのC-MOS OP-Ampならなお良いでしょう。

参考:このバッファアンプは、後に説明のある 「リファレンス・フィルタ」としての働きも持っています。 リファレンス・フィルタは比較周波数成分の漏れがVCOに及ぶのを軽減させるためのものです。

 【10.24MHz:VXO式リファレンス発振器
 PLLを使えば周波数が水晶発振器なみに安定している発振出力が得られます。 しかし10kHzステップでは物足りません。

 例えば7MHz帯のCW送信機に使いたいと思っても7000kHzちょうどではオフバンドになるので使えません。 使える周波数は7010kHzと7020kHzの2波しかないのです。(注:2015年のバンド利用プランの改訂でCW局は一応7045kHzまで出られるようになったが、それでも4波である)

 では1kHzステップで設計したら解決だろうと言う声も聞こえてきます。 しかし実際にやってみますと1kHzステップで満足できる品位の信号を得るにはなかなか高度な技術を要します。 1kHzおきにロックさせるのは難しくありませんが、綺麗な信号を得るのは簡単ではないのです。 容易に製作可能なPLLはやはり10kHzステップくらいが無難なところでした。かなり頑張っても5kHzステップまでが間違いないところです。

 そこで、10kHzステップを埋められるよう10kHzの間を自在に可変できるようにします。  いくつか手法はありますが、いちばん簡単な手としてリファレンス(基準)信号を可変してやります。 「基準」を動かすなんて野蛮だと言われそうですが、10.240MHzをVXOすればそれに伴ってPLLで得られる信号の方も動いてくれます。

 7MHz帯で10kHz動けば良いので、10/7000=0.0014285・・・の割合だけ動かせばOKです。 これは10.240MHzにおいて約14.6kHzということになります。 なお、お気付きのように8MHzでは、10/8000=0.00125なので10.24MHzにて12.8kHzだけ動かせば10kHzの可変幅が得られます。 発振周波数が7MHzのときと8MHzとでは必要な可変量が変わってしまいますがこのような方法で行なう限りやむを得ません。 7MHzで設計しておき、使用する上では8MHzの時には可変できる周波数範囲が幾らか広くなることをわかっていれば支障ないと思います。

 7MHzのHAM Bandに限って言えばバンドの上下で200kHzの違いですから、可変幅の違いは300Hz以下に収まります。 さらにCWバンドに限れば差はもっと少ないのでダイヤル板に目盛を記入してしまっても支障はないくらいでしょう。 なお、7000kHzちょうどにセットしてVXOするとバンドの下の方へオフバンドしてしまいます。 必ず7010kHzの設定からVXOするようにします。それで7010kHzから下の方へ10kHzだけ・・・即ち7000kHzまで自在に可変できます。(MC145163PはN=701に設定します)

 VXO回路は発振に高周波用トランジスタ:2SC2668Yを使いました。 可変範囲を少しでも広く取りたい時にはFETを使った方がやや有利なようです。 しかし、ここではVXOとは言っても0.14%ほどの可変範囲しか必要としません。 普通のトランジスタを使った回路でもまったく支障ありません。FETよりもgmが大きいので発振は容易です。 周波数安定度を見ましたが普通の水晶発振器・・・要するにVXO回路ではない発振回路と違いません。 この周波数安定度はPLLにもそのまま反映されますので7MHz帯の出力も十分安定した周波数が得られます。

 VXO回路といえばいわゆる「VXOコイル」が議論になります。 ここでは18μHのマイクロインダクタが適当でした。このインダクタンスは水晶発振子によって最適値が異なります。 20μH前後で可変できるようなインダクタを使うと製作後の調整が容易です。 既製品ではFCZコイルの07S1.9が使えそうです。 しかし約20μHの可変インダクタはコア入りのボビンに巻けば簡単に自作できます。 無理にFCZコイルを探すまでもないでしょう。

  VXO回路に使うバリコンは最大容量が30〜50pFくらいの物が良いです。 エアーバリコンが好ましいのですがポリバリコンでも一応使えます。 調整はバリコンの可変範囲いっぱいで10kHzが可変できるようにすれば良い訳です。 必要以上に広く可変する意味はありませんが、狭すぎると発生できない周波数ができてしまいます。 VXOコイルとバリコンに並列のトリマコンデンサで可変範囲を加減します。 バリコンがほぼ抜けた位置で10.240MHzを発振し最大容量にしたときそこから15kHzほど周波数が下がるように合わせます。(7MHz帯で出力周波数をみて10kHzの可変幅になるようにしても同じです)

リファレンス発振器のスペクトラム
 リファレンスのスペクトラムが綺麗でなければPLLの出力信号もそれなりになってしまいます。

 写真は10.24MHzのスペクトラムを10kHzのスパンで観測したものです。 ご覧のように非常に綺麗です。

 あまり言いたくないのですが上の方で見たPLLで得た7MHzの信号と比較してみてください。 おなじ10kHzスパンの観測と比較すれば一目瞭然でしょう。 水晶発振のこれはスペクトラムが細く裾野の部分もスッキリしています。 それだけ付随するノイズや揺らぎが少ないことを示しているわけです。  水晶発振ならこの程度の信号が普通に得られるのですから、やはり真に綺麗な信号が欲しければこれに勝るものはありません。

 なんだかPLL式発振器の弱点が暴露されたような感じになってしまいました。 入念に作ったPLLでも得られる信号は水晶発振には幾らか劣ります。 しかし十分な実用性がありますので悲観的になる必要はないと思います。 かつて全盛だったPLL式の発振器を使っていたトランシーバ・・・例えばTS-820やFT-901の局発だって同じようなものだった筈です。 いずれも当時の名機です。 お使いだったお方はそれで支障を感じたことも無かったでしょう。 ここで作ったPLLくらいの性能が得られていればオンエアしていて他局の迷惑にもなりません。 実際にモニタしてみても綺麗なトーンが実現できています。  理想的ではなくとも電子回路は実用的な性能が得られれば良い訳です。 電波法で規定されている信号近傍のスプリアス基準にもまったく抵触しません。(高調波対策はオーバーオールで行ないます)

                 ☆  ☆  ☆

 まずは7MHz帯のPLL式発振器を作ってみました。 これ自体で7MHz帯のCW送信機のエキサイタとして使えます。 2〜3ステージの増幅段を追加すれば実用的なパワーを持った送信機が完成できます。 終段に変調をかければAM送信機にもなりえます。 スタンバイの制御はMC1648Pの電源部で行ないます。 VXO部分は受信中も動作させたままにすれば良好な周波数安定度が維持できるでしょう。 発振周波数の切り替えは7MHz帯のCWバンドに限ればわずか3chですから簡単なスイッチで済みます。 VXO部分は10kHzをカバーすれば良いのでバリコンにツマミを直付したようなダイヤルでも十分行けます。なるべく180°近く展開し、大きめのつまみを付ければ操作しやすくなります。

 今となってはマイコンでDDS ICや新世代PLL ICを制御した方がスマートかもしれませんが、こうした方法でも実用的な発振器は作れます。周波数安定度も良好です。 実用的なものが作れるのですからこうした部品を眠らせておいたら勿体ないでしょう。 将来価値が出る可能性はありませんから今のうちに活用するのが良さそうです。 プログラムなんかいっさい書かなくても使えるところがいちばん有難いところかも知れませんね。(笑)

 評価手段の進歩で以前は不可能だったような解析が可能になったのも今頃になってPLL回路を始めた切っ掛けです。 昔は評価もそこそこでロックさえすれば良いと言った感じで使いました。  あまり酷いものは五感でわかったので実害は無かったと思っています。 しかしデバイスや回路を吟味して、もう少し定量的に突っ込んだ検討ができたら楽しいでしょう。

 PLL回路に使えるICの手持ちがあれば自作プロジェクトに動員するのも面白いでしょう。パーツボックスに眠らせておいては可哀想です。 PLL用のLSI:MC145163PやVCO用のIC:MC1648Pは既にポピュラーな存在ではないかもしれません。 そんな時は最初の写真にあるように他のPLL用ICでも類似の設計はできます。 次回以降でそのあたりも交えて話を進めたいと思っています。 ではまた。 de JA9TTT/1

つづく)←リンク nm