2015年7月31日金曜日

【回路】8MHz Ladder Filter Design , Plus+

【8MHzのラダー型クリスタル・フィルタを作る:プラス+】
 【ラダー型フィルタ設計ソフト
 既に見て来たような「素晴らしい特性」のラダー型フィルタを作るには、従来は面倒な手計算あるいはBASICなどで自作の補助プログラムを書かなくてはなりませんでした。

 それでも製作は可能だったのですがかなり面倒でした。間違いも起こり易いことから「設計+特性シミュレーション」の機能を併せ持ち、ビジュアルに結果を確かめることができる「決定版」とも言えるラダー型クリスタル・フィルタの設計用ソフトウエアが開発されました。 そのお陰で、新ラダー型フィルタ設計製作のハードルは大きく下がったと言えるでしょう。 そうでなければ大半の人は古くさいCohn(コーン)型での設計に甘んじるしかなかったのです。画期的と言って良いでしょう。

 これはドイツ人のエンジニア・ハムであるDJ6EV:Horst Steder氏によるものでARRLの技術誌であるQEX誌の2009年冬号において「 Crystal Ladder Filters for All」とタイトルされた記事とともに紹介されました。 今でも自由にARRLのWeb siteからダウンロードすることができます。ソフトウエアはQEX誌のサポートファイルの場所にあって、2009年度のフォルダの中にあるので、左写真のものを見つけてダウンロードします。

使うのは簡単!
 ARRLのWeb siteに置いてあるものは、.zip形式で圧縮されたものです。 ダウンロードしたら早速解凍しましょう。

 解凍すると「11x09 Steder-Hardcastle」というフォルダが現れ、中に4つのファイルが入っています。 「DishalHelp」というpdf形式のファイルが使い方の説明書です。 平易な英文なので読むのは難しくありません。一度はどんな内容が書いてあるのか目を通しておくべきです。 多彩な機能が簡潔に紹介されているのであとは使いながら参照して行けば良いと思います。

 プログラム本体は左写真の「Dishal2026」と言うものです。これをダブルクリックすれば起動します。 残念なことにWindows用のアプリケーションなのでMacでは使えません。 それほど高性能なPCは必要としないのでWindows XPの時代のマシンでも十分実行可能です。 私はWindows7が平行して走っているMac-miniで起動しましたが快適に動作しています。

 フォルダ内には更新履歴やバージョン情報などのテキストファイルが入っていますが特に見る必要は無いと思います。

参考:Warrington Amateur Radio Club(英国)のサイトに、Jack Hardcastle, G3JIRによって最新バージョンDishal2031がアップされています。あまり違いは無いようですが、Windows OSによっては新バージョンの方が良いこともあるのでリンクしておきます。→ここから. (追記:2015.08.25)

 【テスト用データがなくては!
 起動したらさっそく確かめてみたいのが人情でしょう。 しかし、幾ら優れたソフトウエアでも必要なデータを与えなければ意味のあるアウトプットは得られません。

 必要なデータと言うのはこれから実際にフィルタ製作で使用する水晶振動子の「水晶定数」のことです。 「水晶定数」については前回のBlogでも出て来ていますので、既におなじみかもしれません。 測定方法も紹介しているので既に求めている人もあるでしょう。 ですが、まだ何も手をつけていない人が大半だと思いますから、私が実測した水晶振動子の「水晶定数」を再度掲載しておきます。プログラムを動かす「お試し用」に使って下さい。 フィルタ仕様の一例も書いておきましたのでさっそく設計して試すことができるはずです。同じ結果が得られたならソフトウエアの確認は終了です。

 【さっそく使ってみよう
 ビジュアルにわかり易くできているので、起動して一目見ただけでわかってしまうかもしれません。 ごく簡単に手順を追って説明してみましょう。

①水晶定数をインプットする:このソフトが設計計算で必要とする「水晶定数」は(a)モーショナル・インダクタンス:Lmの値あるいはモーショナル・キャパシタンス:Cmのどちらかの値と(b)実測で求めた直列共振周波数:fsの値、そして(c)水晶振動子の並列キャパシタンス:Cpの値でです。 この3つを上欄の入力窓にマウス・カーソルを合わせてクリックしてからインプットします。 Lm或はCmは水晶定数の測定用治具などを使って予め実測し算出しておきます。 設計計算に必要な「水晶定数」はネットの検索で見つかるようなものではありませんので、手元にある水晶振動子を実際に調べる必要があります。また、並列容量:CpもLCRメータなどを使って精度良く実測しておきます。 直列共振周波数:fsは無調整水晶発振回路における発振周波数で代用しても殆ど誤差は生じません。

②フィルタの仕様をインプットする:必要なフィルタの仕様項目は、(a)フィルタの-3dB帯域幅:B3dB(単位はkHz)、(b)通過帯域に許容するパスバンド・リプル:PB Ripple(単位はdB)のほかに、(c)使用する水晶振動子の数:# of xtals(単位は個)の3つです。 パスバンド・リプルはゼロをインプットすることもでき、その場合はバターワース特性で設計することになります。 ただしバターワース特性は通過帯域から減衰領域への肩の特性が丸くなり、減衰の傾斜が緩やかになります。 0.1dBなり0.5dBのパスバンド・リプルを認めたチェビシェフ特性で設計したほうが総合的に見て良いフィルタになると思います。 このあたりリプルの値を変えたり、水晶振動子の数を変えながら試してみたらビジュアルに変化がわかるでしょう。なお高度な特性ほど実際の製作が困難になるのは当然です。

③特性表示の設定:結果は表とグラフで表示されます。グラフにするとわかり易いですが、細かく見るのか大まかに見るのか、通過帯域の特性を詳細に見たいのか、帯域外の特性を見たいのか・・・など、ニーズは様々でしょう。 グラフ表示の周波数幅を変えられるので上覧の右端の窓にkHz単位でインプットしておきます。 図の例では中心周波数から±5kHz・・全体で10kHzの範囲で表示しています。

 以上、左の図中にも説明を書いておいたので参照して下さい。 これらの必要項目のインプットが済んだら、画面右上の隅にある「Calculate」(計算)ボタンをマウスでクリックすれば計算されて結果が直ちに表示されます。 通過帯域幅を変えてみる、水晶振動子の個数を変えてみるなど部分的な変更をしたなら再度計算させてみれば変化の様子が手に取るようにわかるでしょう。

 もちろん、特性シミュレーションを幾らしたところで、現実のクリスタル・フィルタにしなくては「絵に描いた餅」の域を出ません。 左の中段にラダー型フィルタを製作する際に必要なコンデンサの設計値が表示されるので、それに従って製作することになります。 値は0.1pFまで細かく表示されますが、たいていの場合、近似のE系列の数値から選んだコンデンサの単独あるいは、2個の並列で値を実現すれば十分だと思います。 テスト用データで示したフィルタの製作例ではそのようにして選定した実際に使用するコンデンサの値が記載してあります。

 いろいろ試しながらあとはどんなフィルタに仕上げるのかそれぞれで試行錯誤してみたら面白いでしょう。 他に水晶定数を求めるための補助プログラムなども内蔵されていますが、説明は省略しました。補助機能の使い方はHELPファイルに書いてあるので参照して下さい。

頒布基板の注意
 前のBllogで案内しましたが、フィルタ専用基板が完成したので既に頒布を開始しています。 何名かのお方にはさっそく頒布していますが、使う時にすこし注意が必要なので写真説明しておきます。(頒布に関しては前のBlogを参照下さい)←頒布終了しました。2015.08.11

 スルーホール付き両面基板で製作しましたが、表側のランドパターン少し大き過ぎるようです。 水晶振動子を密着して基板にハンダ付けするとリード線のランドパターンがケース(GNDに接続する)と短絡状態になる恐れがあります。 水晶振動子を0.5〜1.0mmくらい浮かせてハンダ付けすれば大丈夫です。水晶振動子を手芸用のガラスビーズのような絶縁材で浮かせるのも良いでしょう。 製作される際には注意して下さい。 コンパクトで作り易いので市販のクリスタル・フィルタのように扱えるフィルタ・モジュールが製作できます。

                 ☆

 気の早い人はご自身で探索し、既に設計ソフトウエアを走らせているようです。 真っ先にソフトウエアの在処をお知らせしても良かったのですが、水晶定数がなくては試すことすらできませんし、製作事例がなくては具体的イメージも湧かないでしょう。 逆に「完成品」の方から紹介して、どんなクリスタル・フィルタが作れたのか目で見てもらった方がインパクトもありそうです。

 そのような訳で、設計ソフトウエアの紹介が最後になってしまいましたが、走らせるだけなら誰でもできますし、ごく簡単なことです。しかしフィルタ特性に関して一切の造詣も持たないのではその意味も意義も理解してもらえないでしょう。 そのような意図があったことをご理解頂けたらと思っています。 先回りされるのも結構ですが、順を追ってご覧頂いた方が論点が明確になるよう心掛けているつもりです。 性急に結果だけを求めていたのでは、本質がどこにあるのかを見失いかねません。

                 ☆

 一連のBlogですが、著明OMの執筆を理由に未だに古色蒼然たる記事を有り難がるようなお方には関係ない話題かもしれません。 しかし世の中は常に進歩しています。 ご紹介したような有益かつ実践的な研究成果がJA-HAMに広がらないのは実に悲しいことだと思っています。 アマチュア無線コードにもあるように、「アマチュアは、進歩的であること」を実践したいものです。 結局、平易とは言え英文の記事しかないのが問題なのでしょう・・・と言うことで、このBlogで簡単に紹介した内容に加えて、より詳しい内容で雑誌への掲載も予定されているのでもう少し具体化したらお知らせしましょう。 ココまで書いて思い出したのですが、チューニングの話しが飛んでしまいました。ww そちらも纏めて記事でやるしかありませんね。お楽しみに。(爆)de JA9TTT/1

(おわり)

続編あり→こちら

追記:フィルタ基板はまだ幾らか頒布可能なので希望のお方はお早めにどうぞ。(2015.08.10現在、あと1名で終了)←頒布終了しました。たくさんのご要望有り難うございました。ぜひとも有効活用されてください。2015.08.11

2015年7月16日木曜日

【回路】8MHz Ladder Filter Design , Plus

【8MHzのラダー型クリスタル・フィルタを作る・プラス】

完成したラダー型フィルタ
 写真は使用する状態に組立てた8MHzのラダー型クリスタル・フィルタです。

 前のBlog(←リンク)のようなテスト用の構造では実際に使う時には不便でしょう。 小型化してモジュールのように作っておくと扱い易くなります。 水晶振動子のケースは端子から絶縁されていて、浮いているので必ずアースしておきます。 ニッケル鍍金なのでややハンダの載りが悪いですから事前にハンダ付け部分を磨いておくとハンダが容易です。 過度に加熱して水晶振動子の特性が変化でもしたら元も子もありませんから・・・手早くやります。

 このように独立したモジュール化は必ずしも必要ではありません。水晶振動子やコンデンサをSSBジェネレータ基板に直接組み付けてしまっても良いでしょう。 その方がスペースも小さくて済むし性能も出し易いように思います。 ここでは、単独で性能評価する都合でモジュール化しておくことにしました。他へ流用するのにも便利ですので。

参考:この部品配置でパターン化した専用の「フィルタ基板」を製作しています。両面スルーホール、グリーン・レジスト、シルク印刷付きです。少量で申し訳ないが頒布できる見込みです。もし入手希望があればコメント欄やE-mailにて表明を。基板製作はJR2FNK/1鶴田さんにお願いしました。配線パターンには私の要望も反映されてます。

基板完成:2015.7.25】
 追記です。 発注していたフィルタ基板が完成しました。写真のようになっていて、旨く出来上がったようです。

 両面スルーホール基板ながら、片面のみベタGNDにしたので不要なストレーキャパシタの付加は最少限になっています。 但し「おもて面」で水晶振動子の足の回りのパターンと水晶のケースとのクリアランスが不足しているようなので、水晶振動子はやや浮かせてハンダ付けする必要がありました。それ以外はまったく問題ないです。標準的な1.6mm厚の基板にしたのでフニャフニャせずしっかりしています。

 端子は細ピン・ピンヘッダの5ピン分から途中を抜いた3ピンがマッチしますのでソケット形式のフィルタにすることもできて便利です。もちろん、2.54mmピッチの蛇の目基板に搭載することもできます。 それほど枚数がないので先着順で予定数量に達するまで頒布します。 もちろん、従来型のラダー型フィルタの製作にも使えるので持っていたら便利でしょう。

 頒布ですが希望者にお一人3枚ずつ(フィルタ3つ分)で行ないます。例によって、SASE+余剰部品あるいはワンコイン(¥500)と交換でお送りします。 商売ではありませんので利益などは考えていませんが、無償では死蔵するだけのお方が申し込むそうなので低額の有償にさせてもらいました。 基板化したことで性能が出し易くて、均質性に優れたフィルタが作れるでしょう。 まずはメールを。(注:SASEとは返信用封筒のことで、自分の住所氏名を書き82円切手を貼ったものです)←頒布終了しました。2015.08.11

測定用セットアップ
 出来上がったフィルタの特性を見ておきたいと思います。

 写真のような測定アダプタを製作してみました。 このようなものは必須ではなく、測定の都合に合わせて作ったに過ぎません。 端子は2.54mmピッチになっているので、同じピッチのインライン型ソケットをカットして使用しました。

 BNCコネクタとの間に入っている抵抗器は、スペアナの入力インピーダンスとフィルタのインピーダンスを合わせるための補正抵抗です。 これを入れずに直接接続してしまうと、正しい周波数特性が測定できません。

評価結果
 コンパクトに纏めて製作しましたが、前のBlogで得られた特性が再現できていると思います。 組立て構造に問題はなかったようです。

 往々にして、コンパクトに組みなおすと特性が変わってしまうことがあるので注意が必要でしょう。 特にこうしたフィルタのように入出力の端子間で100dBものアイソレーションが必要なものでは十分気をつけなくてはなりません。

 測定時にも注意が必要で、強い信号が出ている部分を覆うなどの工夫を行なわないとこのように奇麗な特性が得られないことがあります。 測定技術が問題になるので十分な経験を積んでおきたいものです。同じ道具があっても誰でも同じに測定ができる訳ではありません。

SSBジェネレータに搭載
 既製品と交換に製作したラダー型フィルタを搭載してみました。 やや基板サイズは大きめでしたが旨く搭載することができました。

 次項のように、まずはキャリヤ発振器の周波数をこのフィルタ用に合わせることから始めなくてはなりません。 USBなりLSBのキャリヤ周波数に調整が済んだら、次は各同調コイルを8MHzに合わせます。 その後でバランスド・モジュレータのキャリヤ・バランスを調整しキャリヤリークが最少になるように追い込みます。 もとが7.8MHzなので周波数が近いことから簡単に調整できました。 キャリヤ・バランスも殆ど再調整の必要はないくらいでした。

 マイク入力端子に低周波発振器を接続して周波数特性を評価してみました。 流石にSSB用に作ったフィルタなので必要以上に帯域幅が広いこともなく、なかなかFBなSSB波が得られました。 通過帯域内のレベル変動もCB用クリスタル・フィルタよりずっと小さいのは予想通りでした。USB側では不要サイドバンドのサプレッションがやや甘いのですが、これはフィルタの特性なのでやむを得ません。8素子でやれば改善できるのは確かです。 他の性能は7.8MHzの時と基本的に違いはありません。 十分実用的なSSBジェネレータになっています。

キャリヤ発振器の変更
 上にも書きましたが、キャリヤ発振器の周波数変更が必要です。 水晶発振子はフィルタ製作の余りを活用します。 もちろん不良品では駄目で、発振は問題ないけれど、他と周波数が合わないのでフィルタにはできなかったような水晶を使いましょう。 ここでは、上の方に少しずが大きかったものを使いました。 VXO形式の発振回路なのでそれで支障ありません。むしろフィルタの通過帯域特性から見てLSB用のキャリヤ発生に有利なように選んだつもりです。

 まずはUSB用に周波数調整して評価してみました。 そのままの回路ではLSB用の周波数に調整できなかったので回路の見直しました。 修正した回路でうまく行っています。 このあたり、使用する水晶発振子の特性とも関係するので個々のケースで対応方法が違います。 フィルタの方は簡単にできたのにキャリヤ発振器の方で思ったよりも手こずることがありそうです。 フィルタと同じ水晶振動子を使ったキャリヤ発振器はSSBジェネレータの製作には必須です。 幾つか試しているので、良さそうな回路が纏まって来たら公開するかもしれません。追記:(2015.08.14)キャリヤ・オシレータのBlog(←リンク)を公開しました。

                  ☆

 フィルタを作ってみましたと言うだけでは検証として不十分でしょう。 実際にSSBジェネレータに搭載し評価が済んで始めて実用性の確認ができたことになります。 ブレッドボードでの試作なので、どうしても構造から来る性能限界があって難しいところもあります。 実験の容易さの点では悪くはないのですが、ハンダ付けで作る前のテストとしては不完全なところがあると思っています。 そのあたりはブレッドボード特有の考察が必要になってくる部分でしょう。
 実際にキャリヤの回り込みあるいは、直接飛び込みのような現象があってGNDポイントを変えてみるなどの修正が必要でした。 ただ、ブレッドボードであまり苦労してもそのまま実用にする訳ではないですから見極めが付いた段階で早めに基板化に移行した方が賢明です。

                −・・・−

新設計でアプローチ
 道具さえあればしめたもの・・とは行かないのですが、設計ツールの話しがまだでした。次回はそのあたり具体的に見たいと思います。宿題を増やしてしまったようですが、慌てずにボチボチやりましょう。興味を惹かれたら継続してお付き合い下さい。コメントもお待ちします。例によって浮気して予告と違う方へ行くかも知れませんが悪しからず。(笑)

                 ☆

 クリスタル・フィルタは機器全体から見たら単なる部品に過ぎません。 幾ら良いものが作れたとしても、活かしてこそ初めて意味も出てきます。 アナライザの画面とにらめっこしながら「良いフィルタができた」と悦に浸るのもオツなものですが、ぜひともFBな電波を出したり、受信機から心地よい音を響かせてみたいものだと思います。 そうでなくては機器への投資も製作に注いだ努力も活きてこないだろうなあと・・・。 de JA9TTT/1

つづく)←リンク

2015年7月2日木曜日

【回路】8MHz Ladder Filter Design

【8MHzのラダー型クリスタル・フィルタの試作と評価】

 【安価な8MHz水晶発振子
 自作無線機に適したクリスタル・フィルタの市販品は限られています。 そもそも無線機を自作する人は限られて来たので、必然的にニーズも減ってしまったからでしょう。 その一方で、性能の優れた水晶振動子(発振子)はCR部品並の価格で巷に溢れています。その水晶を素材にしたラダー型フィルタの手作りに今は絶好の状況になっているのです。

 写真の水晶発振子(=クリスタル)もその一つです。2008年ころ、そろそろ中華パーツが日本に流入しだしたころ購入したものです。性能は半信半疑で買った覚えがありますが、100個で1,400円でした。購入先はaitendoとは別の中華系パーツを扱うAI HKと言うお店でした。通販のページは残っているようですが、いまも同じものが手に入るのかわかりません。

 ラダー型クリスタル・フィルタの自作ブームもすっかり落ち着きましたが、いまではフィルタは「買うもの」から「作るもの」にすっかり定着したようです。 円安なので中華パーツを含めた輸入品は値上がり傾向にありますが、aitendoをはじめとしてこうした水晶発振子が@10円少々で売られているのを目にします。 安い水晶を見つけるとついつい買い込んでしまうのが習慣化していましたが、いつでも買えるとなれば食指も動かなくなっていました。(笑)

                    ☆

 前回のBlog(←リンク)では入手容易なパーツで構成したSSBジェネレータを扱いました。唯一、手に入りにくい部品として既製品クリスタル・フィルタを使いました。いずれ「自作で対応しますよ」と言い訳して済ませてしまったのです。だったら「すぐに対応せよ」との声も聞こえる?・・ので久しぶりにラダー型フィルタを扱うことにします。放置されたままだった中華クリスタルを消費する絶好の機会になりそうです。

 今回は少しだけ・・・否、全面的に新しい手法で行くことにしました。 従来のCohn minimum loss型(コーン最少損失型)の自作は言わばお子様向けコースです。さしたる道具も要らず、特にアタマも使わずに行けます。取りあえず実用的なモノは作れるのですが、不満があったのも事実でした。 そこで、もう少し進めてみることにしました。 もはや目新しくもないのですが、JAでは殆ど紹介されたことがない設計法です。諸外国では既にポピュラーになっており、すっかり世界の動向から取り残されてしまった感があります。 さっそく安価な素材を元にその新手法で始めてみることにしましよう。

 そもそも「フィルタの特性とは?」あるいは関連用語の解説等をいちいちやっていたらキリがありません。フィルタの常識は持っている前提で進めたいと思います。 平易に書くつもりはありませんので、わからないことは自分で勉強してみるくらいのおつもりがないならこの先には進むべからずです。(笑)

 【8MHz水晶発振子の特性
 良い性能のクリスタル・フィルタを作るための基本は水晶振動子の特性にあります。 写真は上記の8MHz水晶発振子の特性です。HC-49/USのケースはGNDして測定しています。 直列共振周波数:fsと並列共振周波数:fpの間隔は10.35kHzです。3kHz幅くらいのSSB用フィルタは十分行けるでしょう。

 参考:フィルタ回路に使う水晶片のことを水晶振動子または水晶共振子と言います。発振回路に使う水晶片は水晶発振子と言います。水晶振動子はフィルタ用の配慮をしてありますが、もちろん発振にも使えます。一方、発振用はフィルタに使うための考慮はしていません。しかし本質的に両者は同じものと思ってもあながち間違いではありません。実際、ここでは発振用の水晶発振子でフィルタを作ろうとしています。 もちろんフィルタへの適否は自身で見分ける必要があります。

 この8MHzの水晶発振子は、主共振の近傍に有害そうな副共振はみられないのでフィルタ用として好都合な特性でした。 購入した100個を測定してみたところ、損失が異常に大きいと言う特性不良が3個見つかりました。3%の不良など日本製では信じられない不良率です。 しかし良品の特性はまったく問題なくてfsのバラツキも±σの幅で見て300Hz以内に十分おさまっていました。 ごく簡単な「従来型」のラダー型フィルタには選別なしでも行けるくらいです。

 選別が済んだら、あとで紹介する参考書などを参照して「水晶定数」を計算で求めておきます。細かく選別・分類してあれば全数の詳細測定は不要でサンプリングで十分そうでした。 水晶定数の参考ドキュメント(←リンク:英文pdfファイル:550kB)

 【ラダー型クリスタル・フィルタの設計
 6素子で試作してみることにします。設計段階ではButterworth特性(バターワース特性)、Chebyshev特性(チェビシェフ特性)3種類で計算し、シミュレーションをしてみました。図はChebyshev(0.1dB)特性の回路定数例です。

 素子数を増やせばButterworth特性も良さそうでしたが、6素子ではSSB用としてやや物足りないようです。 Chebyshev特性で行くことしました。 わずか0.1dBの通過帯域リプルを許容するだけで、Butterworth設計では得られない急峻な減衰特性が得られるからです。 もう2素子増やした8素子にすれば一段と良くなるのは間違いありませんが、設計再現性の判定が目的の試作でもあるため様子見の意味もあってここでは6素子で行くことにしました。 なお、CW用フィルタではまた別の視点が必要でですがここでは将来のテーマとしておきます。

 図中の水晶定数は、ここで使った8MHzの水晶発振子の実測から求めた数値です。世間一般の8MHz水晶発振子がどれでもこれと同じになるわけではありません。 実際、メーカーが違えば、同じ周波数でもかなり異なるのが普通です。たとえ形状は同じでもずいぶん違いが見られます。 入手したものを必ず実測した上でその数値を設計・製作に用いないと所望の特性から大きく外れるでしょう。 手抜きをせずに必ず実測評価するようにします。 この水晶の場合、Cmが小さ目で、Lmが大きい特性でした。但しRsも大きいのでQuはあまり大きくならず標準的な範囲(Qu=約12.6万)です。

 今回はLSB型で作りましたがUSB型で作ることも可能です。但し、水晶屋さんは直列共振周波数:fsの方で管理しているらしく、並列共振周波数:fpの方はバラツキが大きいのです。従って並列共振周波数:fpを利用するUSB型フィルタは水晶振動子の選別が厄介になります。特別な意味でもあるなら別ですが、他人と違うものをやりたいと言う程度の切っ掛けでしたらUSB型での製作はお奨めしません。多くの製作例がLSB型を選択しているのには相応の理由があるのです。

 これは余談ですが、写真のような小さなHC-49/US型ではなく背の高いHC-49/Uの方が有利です。 実際、測定していてHC-49/USではドライブ・レベルがちょっと大きめになるだけで飽和する傾向が見られます。水晶片の物理的なサイズが小さいので大きな信号は扱えないのです。フィルタになっても同じことなので注意しましょう。(要するに小さい水晶を使ったフィルタはIMDが発生しやすいのです)

 【6素子ラダー型クリスタル・フィルタの試作
 SSBジェネレータに搭載する際にはもっとコンパクトに組み立てます。 ここでは設計値と実際がどの程度一致するのか確かめるのが目的です。 部品の交換をしながら評価がしやすいように製作しました。ちょっと雑な作りですがご勘弁を。w

 少々部品のリード線も長めですが、8MHzなのであまり影響はないでしょう。ストレー容量はそれほど増えません。 評価が済んだら解体してそのままの部品を使ってコンパクトに組み直すつもりです。 コンデンサにはNP0特性(CHもしくはCG特性)の温度補償系セラミック・コンデンサを使いました。

 当然ですが、再組み立てに当たってクリスタルの順番は変えてはなりません。特性が変わってしまいます。 なお、初期の実測において設計のままでは特性に不満があったので多少チューニングしました。 試行錯誤的になりますが、部分的にmesh周波数をチューンすれば改善できることが確認できたのです。 幾分行き当たりばったり的ではありますが、チューニングで加減できるのはメリットでしょう。 詳細は後に紹介する参考資料を参照されて下さい。そのあたりも詳しく書かれています。ディープなクリスタル・フィルタの世界が待っています。

6素子ラダー型クリスタル・フィルタの評価・1
 まずは、全般的な特性を見ています。 横軸は全体で10kHzです。 かなり拡大して見ているので、富士山型の特性に見えると思いますがSSB用のフィルタとして悪くない性能です。 Bw60/Bw6によるシェープ・ファクタは2.43くらいです。 単純なCohn型よりも通過帯域が平坦で肩の部分が急峻なのがわかるでしょう。この辺りが今回の改善ポイントです。 上側周波数の傾斜が急なのは直列共振周波数:fpの影響があるからでラダー型である以上やむを得ません。対称性の改善策もあるのですが複雑化するのが欠点です。一番簡単な解消方法は素子数を増やすことです。

 -3dB帯域幅は2.7kHzで設計していますが、実測では2.575kHzとなりました。水晶振動子の無負荷Qが有限なために帯域幅減少しているようです。 fcをBw3で除した、いわゆるフィルタQfは約3,000です。 水晶振動子の無負荷Qは約12万ですから約40倍あります。 0.1dB Chebyshev型(6素子)では理想を言えばフィルタQの90倍くらい欲しいと言うことなので少々の特性の崩れはやむを得ないでしょう。

 損失のある「有限のQ値の素子」を使って所定の特性を得る方法もあります。一段と踏み込んだ設計法になるのですが、十分な理解なしにやれば収拾がつかなくなるに違いありません。既に所定の性能が得られたので、取りあえず深入りしないことにしました。 要するに今は実用性能のフィルタが作れれば良いことにするのです。(笑)

6素子ラダー型クリスタル・フィルタの評価・2
 通過帯域の特性を拡大して見ています。 通過帯域に多少の凸凹があるのは、それを許容する設計だからです。 トレードオフの関係で減衰特性の急峻さ(ロールオフ)を追求したのですからやむを得ません。水晶振動子の無負荷Q:Quが理想の値よりもだいぶ小さいのも関係しています。

 しかし、この程度の通過帯域内リプルはかなり優秀な方でしょう。 先のSSBジェネレータで使ったCB無線機用のクリスタル・フィルタは通過帯域内で数dBの変化がありました。 HAM用の無線機に使ってあるものでもこれに及ばないものを見掛けます。 なかなか良い特性にできたと思っています。 従来型のラダー型フィルタでは得難かった特性ですから新手法は効果的だったようです。

6素子ラダー型クリスタル・フィルタの評価・3
 帯域外減衰特性を示しました。主にスプリアスの評価が目的です。100kHz幅で見ていますが、1MHz幅に拡大しても同様でした。 写真では80dB弱の帯域外減衰しか得られていないように見えますが、測定器(スペアナ)のノイズフロアによる制限です。 測定は抵抗器でマッチングする方法なので多少測定のダイナミックレンジが減少するのは仕方ありません。

 別の方法によれば90dB程度得られていますから、実際にハイゲインなIFアンプで使ってもフィルタ帯域外の信号が通り抜けるような心配はありません。 むしろ良好な帯域外減衰が実現できるようフィルタの実装に注意を払うべきです。 この特性もCB無線機用の7.8MHzクリスタル・フィルタよりもずっと良好です。

 このように市販品のクリスタル・フィルタと同等以上のものが自分で作れるので、既製品のクリスタル・フィルタが淘汰されてしまうのも宜なるかなと言ったところです。 手間は掛かりましたがコンデンサも含めた材料費は500円も掛かっていません。 選別した100個の水晶発振子で、6素子のFBな特性のクリスタル・フィルタが10個くらい作れそうです。余った水晶発振子もキャリヤ発振器に振り向けることができますから無駄にはなりません。(材費や手間賃はともかく、測定器の費用は償却できないだろうと言う陰の声あり。ごもっともです・笑)

設計試作の参考資料
 具体的な設計方法はネグってしまいましたが、興味が湧いて来たなら参考書を参照されてください。Blog一回分の分量ではとても説明しきれないボリュームです。原著を読んでもらった方が良いです。平易な内容の記事もあれば、専門的な感じの記事もあります。わかり易いものから読み始めたら良いでしょう。 フィルタ設計の本質を平易に知ることができる書籍はこれくらいしか無いのです。プロ用の専門書は荷が重すぎるでしょう。以下は比較的入手し易い書籍のはずです。

注目すべき記事は:(順番は重要度とは無関係)

(1)Refinements in Crystal Ladder Filter Design:Wes Hayward W7ZOI (QRP Power, ISBN:0-87259-561-7, $12- ,pp5-8 to 5-13)

(2)Designing and Building High-Performance Crystal Ladder Filters:Jacob Makhinson N6NWP(QRP Power, pp5-14 to 5-28)

(3)A Unified Approach to the Design of Crystal Ladder Filters:Wes Hayward W7ZOI  (W1FB' Design notebook , ISBN:0-87259-320-7, $10- , pp179 to 185)

(4)Designing and Building Simple Crystal Filters:Wes Hayward W7ZOI (W1FB's Design notebook, pp186 to 191)

(5)A Tester for Crystal F, Q and R : Doug DeMaw W1FB (W1FB's Design notebook, pp192 to 194)

 いずれも絶版になっている可能性もありますが、米国の古書店では流通していますのでネット経由による入手も容易でしょう。痛み具合など程度次第ですが数ドルから手に入るようです。他にも興味深い記事が多いので持っていて損はないと思います。「More QRP Power」と言う続編の方がヒットし易いですが間違って購入しないようにして下さい。Moreの方は改訂版ではないのでまったく別の内容になっています。それなりに面白いですがフィルタ関係の記事は載っていません。なお書籍の貸し出しや記事のCopyなどのご要望にはお応えできませんので悪しからず。

 まずは水晶定数LmとCmの求め方から研究することをお奨めします。 幾つか方法があってそれぞれ一短一長があります。 測定器として発振器+周波数カウンタにオシロスコープあるいはRF用電圧計があれば十分可能です。 W1FBのデザイン・ノートにはそのあたりのアマチュアライクで具体的な話しが詳しく書かれています。 私はスペアナと10MHz周波数基準器などを使いましたが、それらが本質的に必要なものとは言えません。 細かく周波数が読める発振器と信号の最大値がわかる測定器があれば水晶定数を求めるには十分だからです。 数pFと言った小容量を精度良く測定する必要があって、LCRメータ:DE-5000(←リンク)が活躍するチャンスでもあります。

 水晶定数が求まったら、あとはフィルタ理論の初歩を学びつつ数表と関数電卓、あるいは最近では専用計算アプリも登場しているのでそれに当てはめれば設計はできます。闇雲にやっても訳がわからなくなりそうですからまずはフィルタの初歩くらいは知っておくべきでしょう。  水晶振動子のバラツキを吸収しチューニングする方法なども参考書には詳しく書いてあります。 同じラダー型フィルタでも今までのCohn minimum loss型のように作りっぱなしでは予定の性能まで到達しないでしょう。チューニングが不可欠なようです。 本当はこうした内容を日本語で読めたら良いのですが、あまりにも硬派の記事は読者を引きつけません。手作り卒業済みのお爺ちゃん読者がメインの趣味誌には荷が重そうです。JAでは紹介される機会は訪れないのかもしれません。まあ英語なら何とかなるからそれで良いのでしょう。(笑)

                    ☆

 CQ Hamradio誌の連載でラダー型フィルタを扱ったのは2006年でした。もすぐ10年になる訳です。 その間にJAのラダー型フィルタ作りが進歩したと言う話しはあまり聞きません。 あの連載の後、機会があれば「おとなバージョン(笑)」のラダー型クリスタル・フィルタをやりたいと思いつつ、年数だけが過ぎてしまいました。 フィルタ理論に根ざしているだけに、その扱いナシでは済まないので「作りました→動きました」式の記事では駄目でしょう。
 そうこうしているうちに米国やEuはどんどん進歩してしまい、いまどきCohn minimum loss型でラダー型フィルタを作ろうなんて言うのは時代遅れになりました。 超古い「SSBハンドブック」(=JAの)やHJ誌にあったようなラダー型を有り難がっているようではナンセンスになっています。 あの時、続きをやっておけば良かったとつくづく反省の日々です。(爆)de JA9TTT/1

つづく)←リンク                   

2015年6月17日水曜日

【回路】Diode Balanced Modulator

【回路:ダイオードを使ったバランスド・モジュレータ】
 【ダイオードを使ったバラモジ
 写真はゲルマニウム・ダイオード:1N34Aを4つ使ったリングモジュレータです。バランスド・モジュレータの一種です。真空管の時代から愛用されて来たバラモジ回路です。 十分研究し尽くされていて性能は安定しており、IC-DBM全盛の時代にあっても有用な回路です。 これを避けて通る訳には行きません。もちろん過去に実験済みですがBlogで改めて採り上げることにしました。

 ここで使うダイオードはゲルマニウムのポイント・コンタクト型(←リンク)に限りません。ショットキー・バリア・ダイオード(SBD)あるいは高速スイッチング用Siダイオードでも良いです。 ゲルマニウムが有利なのは注入キャリヤのレベルが小さめで良いことくらいです。但し内部抵抗の小さい他のダイオードの方が信号損失は少なくなります。

 HAM用の無線機では、八重洲無線は1S1007(JRC製)をTRIO/Kenwoodは1N60(東芝)を好んで使っていました。 1S1007はゲルマニウム・ダイオードですが、ゴールド・ボンド型と言うものです。 ポイント・コンタクト型の1N60を使うよりも幾分損失は少ないようですが大差はないのでどちらも同じようなものだと思って良いでしょう。(もちろん混ぜて使うのはNGですが)
 ここでは1N34A(日立)を使っています。無理に同じものを探す必要はなくて1N60や1K60でも良いです。海外製では1N270が代表的Ge-Diです。 あるいは1SS86や1SS97のようなRF用ショットキー・ダイオードでもまったく同じように使えます。(注:電源整流用のショットキー・ダイオードは接合容量が過大で高周波には不適当です)

 以下、オーソドックスな回路も扱う意味でテストしています。 一般的過ぎる回路には興味をそそられないかもしれません。 確かにその通りで、特別なことは何も書いていありませんので妙なご期待をされているようなお方は早々にお帰りがお勧めです。 わかりきったことに貴重な時間を浪費する意味はないでしょう。さあさ、自作する気のない人は帰った帰った。(笑)

                     ☆

SSBジェネレータの形に纏める
 ダイオード・バラモジを扱っただけでは面白くもないので、SSBジェネレータの形でテストしています。 キャリヤ発振器との繋ぎ方や、マイク・アンプから信号の加え方のような「回路の扱い」の部分も明確にしておく方が後々の活用の為に意味があるでしょう。

 前回のFETを使ったSSBジェネレータ(←リンク)を改造して使っています。 同じく7.8MHzのクリスタル・フィルタを使うので、キャリヤ発振回路は基本的に同じものです。 但しダイオード・バラモジの特性に合わせて小変更しました。 キャリヤ・レベルは小さめで良いのですが、インピーダンスが低いのでそれに合うよう部分的に変更しています。

 マイク・アンプも逆相出力は不要で単純なアンプで済むため簡略化しました。 その結果、FETを使った前例よりも部品数は少なく済んでいます。空白面積が増えたのが写真からもわかるでしょう。

7.8MHz SSBジェネレータ:全回路
 バラモジ(Balanced Modulator)の部分と、マイク・アンプを大幅に変更しています。 キャリヤ発振回路は概ね同じですが出力部分を小変更しました。見た目では違いがわからないかも知れません。

 キャリヤ発振回路はUSB発生用に7797.5kHz、LSB発生用に7802.5kHzを発生します。 USB/LSBの周波数切換えはトランジスタ・スイッチで行なっています。回路の詳細は前回の記事(←リンク)を参照して下さい。 ここで変更したのは2SK544Eを使ったバッファ・アンプ部分です。インピーダンスの低いダイオード・バラモジに対応するため、出力部の7.8MHzトランス:T1を作り替えました。Q4:2SK544Eのドレインもトランスの中点タップに接続します。バラモジへは約2Vrmsを与えています。 なお、2SK544を2カ所で使っていますが、これらは2SK241あるいは2SK439でも良いです。代替は2SK544E=2SK241Y=2SK439E、2SK544F=2SK241GR=2SK439FでOK。最近はニセモノの2SK439が出回っているようですが、本物は足の並び方が他とは逆順なので十分な注意を。 偽物の中身は案外2SK544なのではありませんかね? なお、上記の回路では2SK192Aでの代替はできません。 そのほか2SC372Yは2SC1815Yで代替できます。

 バラモジはオーソドックスな、所謂「コリンズ型」と称するものです。 他の形式を試したこともありますが、この回路が性能的に最も安定していて確実だと思います。 キャリヤのバランス・ポイントが明確にわかり、バランス調整も容易です。 振幅と位相の両方を調整できるので良好なキャリヤ・サプレッションが得られます。 なるべくシンメトリーに部品を並べて作るのは常識ですが、少々アンバランスなレイアウトでもそれなりにバランスしてくれます。調整範囲が広いのです。 ダイオードに1N34Aを使ったのは手持ちの関係なので、1N60でも1K60でも何でも良いです。今どきゲルマニウム・ダイオードの時代でもないですから、RF用のショットキー・ダイオードでも良いでしょう。 ゲルマDiの場合、テスタで順方向抵抗と逆方向抵抗を実測して揃えてやると気休め以上の効果があります。 但しそれほどシビアではないのでダイオードの選別は程々でも十分です。測ることで不良品のリジェクトに意味があるくらいでしょう。 部品レイアウトや調整の方がむしろ影響度は大きいです。

 マイク・アンプはOPアンプを使っています。現在ではオーディオ・プリアンプ用のIC(例えばTA7063P)よりも入手は容易です。性能も十分ですからOPアンプの採用がお奨めです。 ここではNECの通信工業用:μPC151Cを使っています。 但しμPC151Cの中身は一般的な「741型」と等価なのでそれで代替すれば良いです。 今さら741タイプなんて古典的だと思うならもっと近代的なOPアンプを使って下さい。ごく一般的なOPアンプならたいてい使えると思って良いです。 なお、今回の回路ではハイ・インピーダンス型ダイナミック・マイクロフォンに適するように回路設計してあります。ロー・インピーダンス型のマイクロフォンを使いたいなら前回Blogを参照して下さい。 #まあ、ミスマッチにはなりますがそのままでも十分使えるのであんまり神経質にならなくても良いのかも知れません。

 ポストアンプとフィルタ部分は前回Blogとまったく同じです。

 見直してみて、マイク・アンプ部分もバラモジ部分も昔懐かし「熊本シティ・スタンダード」SSBジェネレータのようになってしまいました。意識した訳でもないのですが、まあオーソドックスとはそう言うものなんでしょう。熊本C-STDは地方で入手容易なパーツを主体に実現していたものでした。RF用パーツが乏しくなってきた現状はそれと似た状況に追い込まれて来たのです。結局作り易さを追求すると行き着く先は同じようになってしまいます。もちろん秋月の10Kボビンなど望めませんからトロイダル・コアにコイル巻きで現代風にアレンジしています。(笑)

 IFアンプに検波回路と低周波アンプを追加して要所をダイオード・スイッチで切り替えてやれば熊本C-STD同様の送受信ユニットにもなり得ますので、あとは各自で自由研究されてください。w

 全電流は約23mA(@Vcc=12V)となり、FETをバラモジに使ったものよりも幾分少なくなりました。これはパッシブなデバイスのバラモジなのとOPアンプが1回路で済んでいるからです。 SSBジェネレータ出力は約400mVppが得られています。これは歪みに対して多少マージンを見た値です。後続のミキサーには適当な大きさでしょう。

:U1(μPC151C)のピン接続にミスがあったので図面修正しました。(2017.06.30)

 【バラモジとマイク・アンプ部分
 ブレッドボードにダイオード・リング形式のバラモジは載せにくかったです。 未だ最適レイアウトではないと思っています。(笑) 実用品の製作時にはプリント基板上にハンダ付けで作ることになります。従って此処での多少のまずさは支障ないので妥協してしまいました。 それでもキャリヤ・バランスは奇麗にとれているのでまずまずでしょう。

 バラモジ部分に使ったバイファイラ巻きのトランス:T2はコモンモード・チョークとして製作された既製部品です。 フェライトコアにバイファイラ巻きになっており巻き線のバランスが良く周波数特性も十分だったので試用しています。 自作するなら例によってコアにはフェライトビーズ:FB-801-#43を使い、φ=0.2mmのポリウレタン電線を2本良くよじったものを6回巻きます。まったく同じように使えます。なお、T2を省いてT3のみでバラモジ回路を作ることも可能です。 キャリヤの注入レベルなど多少検討を要するかもしれませんが概ね同じような性能が得られる筈です。

 マイク・アンプにとって、バラモジの入力インピーダンスは低すぎるので過負荷にならぬよう直列抵抗(回路図:R7=1kΩ)で対応しています。 バラモジが必要とするオーディオ信号のレベルは数100mVppで十分ですから直列抵抗=1kΩによる対策で支障ありません。 この直列抵抗はOPアンプが直接容量性負荷にならないようにする意味もあります。OP-Ampを"発振器"にしない為にも必要です。 なお、マイク・アンプの入力部分でRFの回り込み対策を行なっています。 

 キャリヤ・バランスは可変抵抗器:VR2とトリマ・コンデンサ:C24を交互に調整してキャリヤ漏れが最少になるように追い込みます。 VR2は単独のVRでは調整がクリチカル過ぎるので、100ΩのVRを使い両端に470Ωを入れると言った回路形式にした方が良いようです。 部品に問題がなくレイアウトが悪くなければ、VRのほぼ中央で奇麗にバランスがとれます。

 【7.8MHzトランスの巻き方
 このSSBジェネレータでは7.8MHzのトランスを2つ使っています。 FCZコイル:10S9(9MHz用)などを使っても良いのですが、Qの高いコイルが作れるのと、2次側リンクコイルの巻き数を自在にできることからトロイダルコアに巻いています。既成のコイルよりも安価に高性能で最適なコイルが得られます。

 写真はキャリヤ発振回路の出力部分にあるT1の製作例です。 最初に15回+15回の同調側(1次側)を巻きます。 写真ように15回巻きの部分から中点タップを引き出しておきます。 2次側はT1の製作例では4回巻きです。 ポストアンプの入力部にあるT3も1次側は同じように15+15回巻きますが、2次側は8回巻きにします。 トロイダルコア:T-25は外径6.35mmの小さなサイズなので最初は巻きにくいかもしれません。しかしちょっと慣れれば簡単に巻けます。 巻き線は余り太いと巻きにくいのでφ0.2mm程度(AWG32相当)が適当でしょう。作業性を考えてポリウレタン電線(記号:UEW)を使うのは常識ですね。 外付けのコンデンサ:68pFとmax50pFのトリマコンデンサで7.8MHzに同調させます。 だいたい7.5〜10MHzあたりまで可変できます。参考リンク→トロイダルコアでFCZコイルを代替

 【ブレッドボード対応
 ブレッドボードで試作するために小さな基板に載せておきます。 写真の4×4=16穴の小基板は秋月電子通商で売っているものを使いました。 細ピン・ピンヘッダをカットしたものを足ピンにしています。

 トロイダル・コアに巻いたコイルは磁束漏れが少ないので隣接したコイルと結合しにくいためシールドケースは不要です。 コイル同士を密着でもさせない限りまず問題にはなりません。

 ブレッドボードでの製作ではFCZコイルのような10Kボビンは扱いにくいです。この例のように小基板に実装しておけばトロイダル・コアに巻いたコイルも便利です。 大きなコアに巻くと巨大化するので、小さなT-25くらいのサイズが良いと思います。 送信機のようなパワーを取り出すアンプ回路を除けばこのような小型コアで十分です。

 【バラモジの出力波形
 2kHzのシングルトーンで変調しています。 2kHz変調波はバラモジの手前、RFチョーク:L2の部分で470mVppです。 写真のバラモジ出力はDSB信号であり、4kHz離れた2トーン信号の状態です。 このようにエンベロープが2kHzの正弦波と相似の波形が観測されます。

 バラモジ入口部分のインピーダンスは約400Ωでありかなり低めです。(測定は置換法による) VR2(1kΩ)の値やキャリヤ信号の注入レベルによって変化しますが、数100Ωと言った低めのインピーダンスであることに注意を要します。 出力インピーダンスの高いマイク・アンプ回路ではバラモジを歪みなくドライブできていない場合があるのです。 ここではOPアンプの負荷ドライブ能力の関係から直列抵抗:R7(1kΩ)を入れて対処しています。 以前の実験でバラモジを強力にドライブできるようLM386で作ったマイクアンプを使ってみたことがありました。 元々の回路がだいぶ悪かったのか、交換によって延びのある変調が掛かるようになった覚えがあります。  この回路例のような方法でも特に支障はありません。オーディオ帯全般で概ねフラットなインピーダンス特性だからです。

 非同調なトランスを使った形式なので、バラモジの出力にはスイッチングによって発生する高調波等が見られます。写真のような波形として観測されました。 高調波など不要波はポストアンプのLC同調回路:T3であらかた除去されるほか、クリスタル・フィルタで濾波されるので外には出てきません。 もちろん、リニヤリティの良くない増幅回路に多信号を加えたら旨くないので,ポストアンプはできるだけリニアな動作範囲で使うことが肝心でしょう。

シングルトーン
 上記のDSBをポスト・アンプで増幅し、クリスタル・フィルタを通ったあとの信号です。 反対側のサイドバンド・・・この例ではLSB側が除去されたシングルトーンとして観測されます。

 ここでキャリヤ漏れや逆サイドの漏れが大きいと、このような奇麗な帯状の波形として観測されません。 帯の幅が凸凹した波形になるのでバラモジ〜フィルタまでの善し悪しはオシロで見ただけでも良くわかります。 マイク端子に加えている低周波発振器の周波数を変えても、写真のように奇麗な帯状の波形が観測されれば良好なSSB波が得られています。

スペクトラム観測
 上記のシングルトーンをスペクトラム分析してみました。 低周波信号:2kHzの高調波が見られますが、キャリヤ漏れや逆サイドの漏れはたいへん小さくなっています。

 キャリヤ・サプレッションは68dBなので、そのまま送信機にしても十分な数字です。 ブレッドボードの試作ではあっても、振幅と位相を入念に調整してバランスできたため、良い値が得られています。 実際に基板等に製作してもこの程度は容易に得られます。 逆サイドの漏れ(=-71dB)は主にフィルタの帯域外減衰特性によるものです。 フィルタ単体で測定した値がそのまま現れています。

 この程度の漏れであれば、ハイパワー局のスーパーローカルでもなければ、まずわかりません。 -70dBと言う数字は、極端かもしれませんが、もしも10kWでオンエアしたとして逆サイドのパワーはたったの1mWです。 同様にキャリヤの漏れの-68dBの方も1.6mWに過ぎないので少し離れた局なら何も感じられないでしょう。 流石にフィルタ・タイプのSSBジェネレータです。安直に作ってもなかなか良い性能が得られます。

 そうなると、スペクトラムに見える2kHzの2次高調波(=4kHz)が気になって仕方が無いかもしれませんね。 これも歪み率で言えばわずかに0.22%です。 ダイオード・バラモジと言う非線形なスイッチング回路でSSB(DSB)を得ている関係で高調波の発生はある程度やむを得ません。 IC-DBMでも大同小異ですから気にするまでもないでしょう。 マイクアンプが悪くてもっと高調波が出ているRigもあるくらいです。自局の帯域内に落ちる信号であって、IMDによるスプラッタではないから程々に拘れば十分です。 実際に受信機を通して耳で聞いた感じも良く澄んだ奇麗なトーンでした。

                  ☆

 オーソドックスな回路は面白くないかもしれません。 しかし、オーソドックスと呼ばれるだけの理由があります。作り易くて良い性能が得られるからこそ「定番」の地位にあるのです。 ダイオードを使ったリング変調器はSSBの黎明期からありました。それ以来様々な機器に使われて来ただけの訳があります。

 ICを使ったDBMの方がモダンで良さそうに感じるかもしれませんが、ギルバートセル型DBMは電源電圧を上下の差動回路で分け合う構造から、ダイナミックレンジの点では不利なのです。 少しでも過大な入力を加えると酷い歪みを見ることになります。 ダイオード・バラモジも過大入力で飽和することに違いはありませんが、IC-DBMのように電源電圧で制限される訳ではないので歪み方はずっと緩やかです。 そのような利点があるので今でも使われているのでしょう。

 この回路例に見るように各入出力端子を明確に終端しなくても大丈夫です。50Ωと言ったインピーダンスに固定化されている訳ではありません。思ったよりも使い易い回路です。 バラモジ回路そのものはかなり前に実験済みでしたが、改めて製作して確実性の高さを再確認しています。 回路の見直しで重要なポイントの存在もわかって意義深かったです。 珍しいだけの妙な回路を試す以前に「スタンダード」から始めてみたらどうでしょうか? きっと良い結果が期待できます。

 バイポーラ・トランジスタ(BJT)、FET、そしてダイオードを使ったバラモジと続けて3種類を扱いました。 では、どれが一番のお奨めなのかと問われれば、総合的に見てダイオード・バラモジが良いのではないでしょうか? それではつまらないお方はBJTなりFETなりで試されたら良いでしょう。 いずれにしてもIC-DBMに劣るものではありません。 要するに品薄のIC-DBMを頼ることなく十分な性能を持ったSSB送信機は作れるのです。 de JA9TTT/1

注意:同じように作ってみたが、「旨く動かない」等のご相談には対応できないのでそのおつもりで。 同じように作ったと言いつつ、ご自身の判断で色々代替し、その挙げ句ぜんぜん同じじゃない・・・など、良くあって凡人の私ではとても面倒を見切れません。 ましてメールでの対応は困難です。 もしご近所なら拝見させて頂いてご一緒に悩みたいと思います。お気軽にご持参下さい。

(おわり)

2015年6月3日水曜日

【回路】Transistor Balanced Modulator, Part 2

回路:トランジスタを使ったバランスド・モジュレータ・FET編
SSBジェネレータに仕上げる
  このBlogでは電子回路の部分要素を扱うことが多いです。大規模な回路も要素の集まりですが、ポイントとなる回路は案外限られています。そのポイントを十分理解しておくことが全体の理解にも繋がると思っています。 しかし、回路の一部分ばかり弄っていたのでは目的物の完成にはほど遠いと感じるでしょう。

 今回もIC-DBMではなくて再びトランジスタを使ったバランスド・モジュレータを扱いますが、部分回路に留まらず「SSBジェネレータ」の形にするまでを扱うことにしました。SSBジェネレータとして実用性能を目標にしたのでそのままSSB送信機に使えます。

 写真は最終的な回路構成をブレッドボードで検証中の様子です。 入手が容易なトランジスタを使ったバラモジの一環として検討していますから、入手しにくい半導体は使っていません。 IC-DBMを使うよりも継続して製作可能だろうと思っています。 以下、部分的な回路を扱うだけでは済まないので少々長くなりましたが興味があれば順を追って頂ければと思います。 もちろん、何時ものように主な目的は自家用の備忘録であり、同じ情報が役立つ可能性があるのは何がしか自分の手で作ろうとする人だけでしょう。

                     ☆

クリスタル・フィルタとキャリヤ発生用水晶
 フィルタ・タイプのSSBジェネレータを作るには「SSBフィルタ」が必要です。 同時に、フィルタ特性に合わせたキャリヤ発生用の水晶発振子も必要になります。

 最初は自作のラダー型フィルタで行く予定でしたが時間がなかったので既製品を使うことにしました。 一般的なSSBジェネレータは8〜12MHzあたりで作るのが適当です。 昔のようにダブル・コンバージョン(2回周波数変換)で目的周波数を得るのなら、もっと低い周波数も良いです。 しかし簡略化のためにシングル・コンバージョンで目的周波数を得るには8〜12MHzくらいが適当です。 それ以上高いと良い特性のフィルタが得にくくなってきます。
 9MHzのフィルタもあったのですがキャリヤ発振用の水晶発振子が見つからなかったので7.8MHzのフィルタを使うことにしました。 1970年代の中頃、車載用CBトランシーバの輸出ブームがあって、そのために使われたクリスタル・フィルタです。ブームの終息後にたくさん放出されたので今でも持っている人は多いと思います。

 SSB用フィルタは手に入ってもキャリヤ発振用のクリスタル(水晶発振子)が揃わないことも多いものです。そのときはDDSオシレータ(←リンク)を使って発生させる手もあります。(注・1) ここでは7.8MHzのフィルタに適した水晶発振子が見つかったのでそれを使うことにしました。 但し、CBトランシーバのキャリヤ発振は特有の工夫がしてあるので予め検討が必要です。

 写真の水晶発振子を使う前提で真っ先にキャリヤ発振回路から検討することにしました。 旨く行くようならこれらの水晶発振子を使います。 写真左の2個の水晶発振子(HC-25/U)は本来のキャリヤ発振用で、右の2個(HC-18/U)は不良になったフィルタ(7.8MHzの)を解体して得たものです。 最終的な話しになりますが、どちらも旨く使えることを確認しました。なおHC-25/Uはブレッドボードに刺せないので専用ソケットを併用します。

注・1:キャリヤ発振に使う水晶発振子がないなら率先してDDSモジュールを使うべきではないかとのご意見はごもっともです。他に解決手段がなければ勿論それが選択肢です。しかし、DDSモジュールの問題は消費電力が大きいことにあります。わずか数mAでは働きません。

クリスタル・フィルタの特性
 CB用クリスタル・フィルタは帯域幅が広いことが知られています。あらためて評価してみました。 -3dB帯域幅で見て4kHz以上あるのがわかります。 従って、正しく使うためにはマイクアンプにローパスフィルタ:LPFを入れて3kHz以上の音声をカットする必要があります。実際にCBトランシーバでも簡単なLPFが入っていました。 まあ男声なら素のままでも大丈夫そうなのですが・・・。

 実測したのは正しいキャリヤ・ポイントを知るためと特性の変化が見られないか確認するためです。 なにしろ作られてから10年どころではない年月が経過していますから、新品のように見えても劣化していて何ら不思議ではありません。 メーカーが保証する水晶振動子の寿命はせいぜい10年だそうです。 水晶振動子の固まりであるクリスタル・フィルタの寿命も同じようなものでしょう。(実際はもっと持つようですが徐々に故障率は高くなる)ちなみに、このフィルタはハーフラティス3段の構成で、水晶振動子を6個使っています。

 写真の2個のフィルタを評価してみましたが、幸い大丈夫そうでした。あまり性能の良いフィルタとは言えませんがSSB発生用として十分な特性です。 精密に評価してみてUSB用のキャリヤ・ポイントは7797.5kHz、LSB用は7802.5kHzで良いことがわかりました。 音声は少々ローカット気味になりますが、フィルタの特性なのでやむを得ないでしょう。

 SSBフィルタも自作で行くことを考えて8MHzの中華クリスタルを使ったラダー型フィルタも検討しています。いずれ機会があれば扱うつもりです。 設計に折り込み済みなので8〜9MHzのSSBフィルタならSSBジェネレータの回路はそのまま使えます。(新しい設計によるラダー型フィルタの製作へリンク→ここ

キャリヤ発振回路の検討
 CBトランシーバでは、常にコストダウンが課題でした。他の部品より高価な水晶発振子を1枚でも少なくするために様々な工夫が行なわれていました。 例えばLSBを作っておいてから、キャリヤを逓倍した信号と差のヘテロダインをとってサイドを反転し、USBを得るといった怪しい方法さえも見られたほどです。(おわかりですか?) チャネル用水晶発振をPLLシンセサイザ式にしたのも水晶減らしが目的でした。

 図の回路は自作ハムならすぐにわかると思いますが、LSB用の水晶発振子を使ってVXO式にUSB用キャリヤも作る方法です。 1個の水晶発振子を2個分働かせる訳ですね。 実際にこれと類似の方法がCBトランシーバで使われていました。 VXOコイルに相当するL1(22μH)が回路のポイントです。しかし、わずか数kHz下に動かせば良いだけなので難しくはありません。もちろん、L1のインダクタンスの値は用いる水晶発振子に適した値があるので、実際に使う物で加減してみます。 但し既成品のマイクロ・インダクタを幾つか交換しながら良い値を見つける程度で済むようでした。

 なお、このようにするとLSBとUSBでは発振レベルに違いが出ます。 あまり極端に変わらなければ大丈夫だと思って良いです。 発振レベルを揃えるためにALCを掛ける手もあって実験してみましたが、複雑化する割に効果が少ないので採用しませんでした。 単純明快な回路の方が優れていると思います。 発振強度はVXOコイルの品質によっても影響を受けるので、変化が大きいようなら別の物に交換してみます。

キャリヤ発振回路の製作例
 写真は、あとで出てくるSSBジェネレータの回路で試作している様子です。 主な違いはUSB/LSBの切換えスイッチの部分にあって、機械的なスイッチではなくトランジスタ・スイッチを使っています。

 機械的なスイッチでは配線を長く延ばせないのでリレーを使う必要があります。トランジスタ・スイッチに置き換えれば直流的に切り替えられるので配線を長く延ばしても大丈夫です。

 VXO式は周波数安定度が気になるかもしれませんが、実用上まったく支障のない性能が得られます。 VXOコイルのインダクタンスを無闇に大きくせず必要最低限に留めるのがポイントです。 わずか数kHzの変化で良いのですからVFOの代わりに使うようなVXOとは違います。大きなインダクタンスは必要ありません。 その結果VXO形式であっても周波数安定度は良好です。

 ここでは、不良になったクリスタル・フィルタを分解して得た周波数:7801kHzくらいの水晶振動子を使ってみました。 他にキャリヤ発振用に作られた7801.5kHz水晶発振子に交換してもほぼ同等でした。 参考までに50pFのトリマコ・ンデンサを使った場合、周波数の可変範囲はUSB側が7790.35〜7802.98kHz、LSB側は7801.27〜7803.40kHzが得られました。USB側はまだ調整範囲が広すぎるように感じます。 実際にはUSB用に7797.5kHz、LSB用には7802.5kHzになるよう調整します。

参考:8000kHzの水晶を使った場合、USB側:7994.81〜8000.14kHz、LSB側:7999.12〜8000.12kHzの可変が可能でした。 同じ水晶発振子でラダー型フィルタを作った場合、通過帯域は下側に4kHzくらいずれるので、概ね使い得る可変範囲にあると考えられます。

キャリヤ発振の発振波形
 Q1:2SC372Yのエミッタ波形です。 このように歪んだ波形ですが、確実な発振をさせるためには正帰還量を大きめにしなくてはならないので、この程度でやむを得ないでしょう。

 実際には、このあとで同調回路を含むバッファ・アンプを置いたので心配はいりません。 手持ちの関係で発振用トランジスタには2SC372Yを使いました。 代替品として2SC1815Y、2SC945等のほか、専用の高周波用であれば2SC1923Yや2SC2668Yなどが良いと思います。 周波数も8MHzあたりなので小信号用トランジスタに使えるものはたくさんあります。 どうしても発振しないのはたいてい水晶発振子に原因があります。 FT-243型のような古典的な水晶発振子はアクティビティが下がっていて、幾ら頑張っても発振してくれないことがあります。お爺ちゃんの遺品活用も程々に。hi hi

バラモジに与えるキャリヤ発振
 バラモジに与えるキャリヤ信号は、写真のように奇麗なものになります。 これはバッファ・アンプに同調回路を含む形式を採用したからです。 2SK544E(2SK241Y同等品)を使っていますが、入力インピーダンスが高く、帰還容量も小さいのでドレイン側同調回路の調整で周波数が引っ張られるようなこともありません。 2SK241等は小信号RFアンプ用と思われていますが、こうした発振回路のバッファ・アンプにも最適なデバイスです。

 具体的な回路は次項を参照して頂くとして、このようなキャリヤでバラモジの2SK544F(2SK241GR相当)×2をドライブします。 振幅はすこし大きめですが、試作なのでこれでやってみることにしました。 5Vppくらで十分だと思いますが、これで概ね支障はないようです。

7.8MHz SSBジェネレータ:全回路
 このBlogのタイトルはトランジスタを使ったバラモジのPart 2なのですが、今回はFETを使うことにして7.8MHzのSSBジェネレータの形に纏め上げることにしています。 なお、バイポーラ・トランジスタ:BJTを使ったPart 1はこちら(←リンク)

 以下、簡単に回路の説明をしておきましょう。

 キャリヤ発振回路は既に実験済みのVXO式を採用し、1個の水晶発振子でUSBとLSB用を発振しています。 周波数調整は幾らか相互に影響します。USB/LSBを切り替えながら数回調整を繰り返して所定の周波数に合わせます。 一旦合わせた後の周波数安定度は良好なので暫く再調整は不要な筈です。 Q2:2SK544Eのドレイン側同調:T2の部分はT2のリンク側をオシロで見ながら最大に調整すれば良いです。バルボル+検波プローブでピークに合わせても良いでしょう。T2はアミドンのトロイダルコア:T25-#2にφ0.2mm UEW線を1次側30回、2次側(リンク)は15回巻きます。

 マイクアンプは2回路入りのOPアンプを使いました。RC4558は汎用品(はんようひん)であって、たいへんポピュラーなものです。JRC製のNJM4558でも良いです。同等品は他にもあって一つ100円くらいで買える有難いパーツです。 性能は申し分ないので対抗するつもりで下手なディスクリート回路など持ち出しても勝ち目はありません。hi  但しLM358系OPアンプで代替するのは宜しくありません。(まあ、実験的なら可ですが・笑) マイクロフォンとしてはローインピーダンス型が適しています。 ダイナミック・マイクロフォンのほかECMも使えます。 通常その必要は考えにくいのですが、どうしてもマイクゲインが不足するようならR2(50kΩのVR)を100kΩに変更します。

 バラモジはFETを2つ使ったシングル・バランド・モジュレータ(SBM)です。 この部分が本来のBlogメインテーマです。 FETは2SK241GR(東芝)や2SK544F(三洋・ONセミ)あるいは2SK439F(日立・ルネッサス)のいずれでも良いです。(もちろん、それらの表面実装型でも良いですが具体的型番は省略します) 2SK19や2SK192のようなJ-FETも使えますが、キャリヤ信号をそれらに合わせて最適な大きさに調整する必要があってすこし面倒です。 従って上述のようなMOS型の高周波用FETが使い易いです。
 ほかにDual-Gate MOS-FET(例えば3SK73など)のゲートG1とG2を結んだものでも代用できます。 なお、2N7000等のN-ch MOS-FETの採用も考えられますが、これらは小信号用でもRF用ではないため電極間容量が極めて大きので違った観点から検討しなおす必要があります。エンハンスメント型なのでプラス電圧のゲートバイアスを掛ける必要があるので注意を要します。

 バラモジを出たあと、2SK544F(2SK241GR同等)を使ったポストアンプを通ってからクリスタル・フィルタで不要な側のサイドバンドが除去されます。 電源電圧は12Vで、全体の消費電流は約30mAです。なかなか省電力にできました。 後続のヘテロダイン・ミキサの入力にちょうど良い、約400mVppのSSB波が得られます。

バラモジとマイクアンプ部分
 バラモジには2SK544Fを2つ使っています。 事前にチェックして、Idssがほぼ同じものを選んでおきました。 非常にうまくキャリヤ・バランスが取れるので、調整用VR(VR1)の可変範囲はもっと狭くても良いくらいです。

 バラモジの出力側トランスには既製品のRFトランスを使ってみました。 ミニ・サーキット社のADT4-1WTと言うものです。 流石に巻き線のバランス状態は良好です。 自分で巻くのは手間がかかると思うなら、購入するだけの価値はあると思います。 なお、手持ちにあった物を使ったので、表面実装型を足付きに変換して試作に使っています。 最初から足付きDIP形状のRFトランスを使えば手間いらずです。

 マイクアンプは2回路入りのOPアンプ:4558型を使っています。 オーディオ・アンプにも使える性能があるので、HAM用のSSBジェネレータには十分すぎる性能です。 トランジスタで作ると3〜5石は必要なので、ここはICを使った方が有利です。 部品に拘るお方は"Muse"なり、音響用OPアンプが差し替え可能なので使われたら宜しいでしょう。(笑)

バラモジ出力トランスの構造研究
 ミニ・サーキット社のADT4-1WTは写真(下側)のような構造になっています。 各巻き線の結合度を上げ、なおかつ平衡度を確保するためにメガネ型のフェライトコアに巻き線しています。

 写真で見ると大きそうに見えますが、米粒のようなサイズのフェライトコアです。そのため各巻き線のインダクタンスが小さいのであまり低い周波数には適さず、下限周波数は2MHzとなっています。逆に高い方の周波数特性は十分延びていて仕様書の上限周波数は775MHzです。

 なお、ブレッドボードで試作する関係で、写真のような16穴の小型ユニバーサル基板に実装し、ピンヘッダを立てて使用しました。使うのがHF帯なので支障はないです。 ICのように小さな部品なので、ディスクリート部品で作ったバラモジとは言えかなりコンパクトに作れます。

自作トランスでも良い
 前回のBlogのように自作のTrifiler(トリファイラ)巻きトランスでもまったく同じように動作します。 性能に違いは無かったので巻くのが面倒でなければ自作を推奨したいと思います。巻線方法は前回のBlog(←リンク)を参照。

 ミニ・サーキット社の小型RFトランス:ADT4-1WTは単品買いでは$15-程度、20個まとめ買いでも単価$3-くらです。 しかし自分でフェライト・ビーズに巻けば100円も掛からずに作れます。 性能もこの例のように数MHzで使うのであればまったく同等でした。 面倒で無ければ自作するのが経済的です。実際に比較試験でも違いは見られなかったので心配はいりません。

マイクアンプの出力波形
 Push-PullになったFETのゲートに音声信号を加えて変調しています。 音声信号の一方は位相反転し、両方のFETのゲートを各々逆位相の音声信号で変調します。

 一方のFETのみに音声信号を加える「片肺」でも十分に変調は掛かるのですが、歪み特性上あまり好ましくないことがわかりました。

 このあたりは簡略を求めるのか、少しでも良い特性を追求するのかによって、どちらの回路を採用するか分かれる部分です。 歪みが増えるとは言っても了解に支障があるほどではないので「片肺」の簡略型でも良いのかもしれません。

 最初は片肺でやっていたのですが、波形を見ているとどうも気になったので、途中から両方のゲートをドライブする形式に変更しています。 耳で聞いた範囲では片肺でも行けそうではあったのですが・・・。(笑)

バラモジの出力波形
 1kHzのシングルトーンで変調しているので、バラモジの出力では2トーン信号のような波形になっています。 要するにまだDSBの状態です。

 バラモジの出力に非同調の広帯域トランスを使っているので含有する高調波などが干渉した波形が見られます。 実際にはこのあと同調回路で7.8MHz付近の信号だけを取り出すので特に支障はありません。

 ただ、他のデバイスを使ったバラモジよりもスプリアスは大きめな感じもします。 実用上の支障はないようですが、多少キャリヤのレベルなどを加減してみても良いのかもしれません。 波形の谷の部分がシャープなのでキャリヤ漏れは十分抑えられていることがわかります。

 変調信号を徐々に大きくして行くと、バラモジの部分で歪んで来ますが、その前にポスト・アンプの方が歪んでしまいます。従って、バラモジの方は常にリニヤな範囲で動作させられます。

ポストアンプとクリスタル・フィルタ
 バラモジの後にはポストアンプを置くと有利です。 フィルタとインピーダンス・マッチングが容易になるからです。 ポストアンプの入力部分にあるトランス:T3はアミドンのトロイダルコア:T25-#2にφ0.2mm UEW線を同調側30回(中点の15回でタップを出す)、バラモジに接続するリンク側は8回巻きます。


 ここでALCを掛けられるようにしておきました。 但し、あまり強くゲインを抑さえてしまうと、アンプのダイナミックレンジが狭くなってしまいます。 マイクゲインなど加減しつつ、オーバードライブにならない程度にピークを抑えると言った目的でALCを掛ける方が良いです。

 写真のクリスタルフィルタはEF-Johnsonブランドですが、これはCBトランシーバの納品先が同社だったのでそのシールが貼ってあるのでしょう。 クリスタル・フィルタのメーカーはNDKとかHzと言ったおなじみの日本の会社です。

シングルトーン
 フィルタを出たシングルトーンです。 単純なシングルトーンでさえ、奇麗に出てこないSSBジェネレータもあるくらいなので、この程度の信号が出てくればまずまずと言ったところでしょう。

 AF発振器の周波数を変えながら周波数特性を見たら、あまりフラットではない感じを受けました。 リニヤ目盛りで見ているからでdBで見たらそんなに悪くもない訳です。 フィルタの通過帯域特性がそのまま出てくるのだから仕方が無いでしょう。 耳で聞いてみるととても自然な感じの音なのでまったく支障ないどころか、良い音のジェネレータだと言っても良さそうでした。

スペクトラム観測
 ブレッドボードの限界を測定しているような感じです。 やはり完全なGNDが取りにくくて、信号が干渉し易いのです。 従って、キャリヤ・サプレッションは不十分でした。

 このあたりは、きちんとハンダ付けで基板に組み立ててやれば簡単に解決するから心配はいりません。少なく見ても20dBくらい改善されるでしょう。

 低周波アンプのゲインを少な目にしたので、フィルタ帯域内のノイズは少なくてS/Nの良いSSBジェネレータに仕上がっています。 音声帯域内に発生する2次高調波も十分小さいです。このあと目的周波数にヘテロダインし、アンプして行くことになりますが「静かな」SSBジェネレータになったと思います。

                  ☆

 このBlogには集計機能があって、どの記事がどんなキーワードにより参照されたのかがわかります。(誰がアクセスしかはわかりません) 無線の自作なんて言う奇特なHAMも珍しいようですが、意外に「SSBジェネレータ」をキーワードに検索されるお方もあるようです。 Blog内には20kHzのLCフィルタを使ったSSBジェネレータがありますが、あまりにも特殊な例でしょう。回路図も公開していません。 そのため、以前からHF帯の送信機なりトランシーバに使えるようなSSBジェネレータを扱う必要がありそうだと思ってきました。 それがやっと実現したような訳です。

 入手性が悪くなって来たIC-DBMは使わない方針でFETを使ってみることにしました。バラモジにFETを使う例はJA1APT金平OM(故人)のかなり古い記事(3SK22Y×2使用)くらいで、他にあまり例を見ないないようです。どのような性能なのか自身で確認したいと思っていました。 SSB送信機の要(かなめ)にあたる部分なのでイージーに製作できるとは言いにくい箇所もありますが、多少電子回路の製作経験があれば難なく作れるでしょう。特に難しいと言った部分はありません。写真を見ながら感触を掴んでもらえば十分行けるはずです。

 入手が難しくなって来たのは既製品のクリスタル・フィルタくらいでしょう。これは自作のラダー型フィルタ(←リンク)で解決できます。 使うICはOPアンプと3端子レギュレータくらいと割り切って設計しておけばこの先10年くらいは製作可能な回路になります。もちろん、実際に使う部品は表面実装型になって行くかもしれませんが・・・。
 FETには2SK544のEとFを使っていますが、2SK241や2SK439でも良くて、Idssランクもどれをどこに使っても良いです。但し、バラモジの部分は同じランクのものを使います。もし手持ちに数があって可能ならばIdssが近いものを二つ選んで使うと良いです。Idssの測定法は以前のブログ(←リンク)で扱っています。上記FETには、それぞれ表面実装型の同等品が登場しています。

  ごく初めの頃ARRLのアマハンなども参考にしてみましたが、どう考えても旨くない所が幾つも出て来て満足な性能は得られないようでした。ARRLのアマハン記事ともあろうことが・・と言う感じでした。 そのお陰で各回路部分を数種類試すなど思っていた以上に手間と時間が掛かってしまいました。 記事の能書きとは違い、実際やってみないとわからない部分などあって、ここで公開した10倍どころではないデータを採っています。 バラモジの部分に限ればIC-DBMを使う方が幾らか安直なのですが、それとは違った面白さもありました。 可能な範囲の検討は行なっておいたので製作の再現性はまずまずだと思っています。de JA9TTT/1

注意:同じように作ってみたが「旨く動かない」等のご相談には対応できませんので予めそのおつもりで。 同じに作ったと言いつつ、実はぜんぜん同じじゃなかった・・・など良くあって、凡人の私ではとても面倒を見切れません。ましてメールでは無理な話しです。 もしご近所なら拝見させて頂いてご一緒に悩みたいと思います。お気軽にご持参下さい。

つづく)←ダイオードDBMを使うSSBジェネレータへリンク.