2018年10月31日水曜日

【その他】Update Information (1)

Blogの更新情報
 さきほどBlogを更新しました。
180VのDC-DCコンバータのBlogに「電流アップ」の実験結果を追記しています。良かったらリンクからご覧ください。

リンク==>こちら

写真はお知らせとは関係ありません。 季節がら秋らしく紅葉の写真です。10月29日に軽井沢の「雲場池」で撮影したものです。 ちょうど紅葉の見頃でした。天候にも恵まれました。 秋も深まって里の方へ紅葉も降りてくるのでしょうね。 朝晩はずいぶん寒くなってきました。 風邪など引かれませんように! de JA9TTT/1

(おわり)22nd

2018年10月25日木曜日

【回路】NIXIE Tube Clock Design, Part-1

NIXIE管を使った置時計の設計・その1
  前回(←リンク)はNIXIE管(ニキシー管)表示器の昇圧電源を試作しました。 思ったより簡単な回路で点灯に必要な電源が作れました。 ではNIXIE管で何を作るのか?・・・と迷ったのですがオーソドックスにデジタルクロック・・・置時計を作ることにします。 電圧計や周波数カウンタでも良いのですが、せっかくの表示器ですから誰にも手が出しやすそうな製作にしましょう。(笑)

 NIXIE管を使ったクロックはネット上でよく見かけます。製作キットも売られており人気があるようです。 しかし、ニキシー管は時計用の表示デバイスとしてあまり適当ではありません。 LEDや蛍光表示管に比べて点灯寿命はかなり短いのです。 これから使うソ連(ロシア)製のNIXIE管がどれくらいの時間使えるか未知数ですが、ここは遊びと割り切ってやってみることにしました。 さっそく改題して設計を始めます。

                   ☆

  今回はNIXIE管を使う表示部分は登場しません。 表示器ドライブは単純な回路ですが電源部と合わせて次回をお楽しみに。 まずは時計の機能を司る部分を設計・試作します。 時計の計数部はデジタル回路の基本のようなもので、過去にはたくさん製作例がありました。 ここで作るものも定番と言えますが水晶発振子(クオーツ)を基準にし停電しても時刻は保持される形式にしたいと思います。 しかし時計なんてデジタルの製作としては平凡でしょう。 何か少しでも特徴を持たせたいものですね。 あまり興味のないお方は早々にお立ち去りください。時間を無駄にされませんように。 以下、おもに自家用の設計メモです。

 【クロック本体部分の開発
 試作中の時計の主回路部分です。

 時刻の刻みの基準としては:
(1)AC電源の50/60Hzを使う方法
(2)水晶発振子(クオーツ)を使う方法
(3)GPSからの1pps信号を使う方法
(4)ルビジウム原子周波数基準を使う方法・・・など幾つか考えられます。

 それぞれ検討してみると、(1)のAC電源の方法は停電になるとまったくダメですし、場所を移動するたびに時刻合わせが必要になります。これでは不便なので適当ではないでしょう。 マイコンの助けを借りれば(3)も良いのですがやや大げさですし電波の入りが悪い所ではうまくありません。外付けにするとアンテナが紐付きになるのもイマイチです。(4)は原子時計ですから正確無比ですが、消費電力が大きいのでバックアップは困難です。手軽に遊ぶにはやり過ぎでしょう。 他にも今の時代ですからIoTの応用でインターネットを経由した自動的な時刻合わせもありそうです。  結局、(2)のクオーツ式はオーソドックスですが実用品として優れていると思います。 使うデバイスを選べば消費電力はごくわずかですみます。 AC電源が切れてもバックアップされるように作っておけば場所の移動や持ち運びも自由自在です。 時刻合わせも電池交換の時だけで済みます。 ここでは水晶発振を基準にしたクオーツ置時計を作ることにします。

                   ☆

 時計は停電時のバックアップが問題になります。 NIXIE管は消費電力が大きいので点灯させたままでバックアップするのはたいへんです。 商用電源・・要するに家庭のAC100V電源ですが・・が来ている時はNIXIE管が点灯して時刻を表示します。 滅多にありませんが、停電すると表示は消えますが時刻の歩みはそのまま継続されるような設計にしましょう。AC電源が復帰したら正しい時刻で再び点灯するわけです。 計数部分の電源は乾電池を使って少なくとも1年以上交換せずに使えるよう考えます。或いは電池での動作はバックアップ時のみと言う考え方もあります。 いずれにしても時計機能の低消費電流がポイントと言うわけです。 また、停電時における表示回路部と時計機能部の自動的な切り離しも重要な課題になりそうです。  それらを考慮して試作したのが写真のボードなんです。

クロック本体部分の回路図
 時刻の基準発振には秋月電子通商で売られているRTC基板モジュールというものを使うことにしました。 特徴などについては後ほど扱います。その部分の図は省いています。(注:図面の説明にミスがあったので更新しました。2018.10.27)

 時刻表示のうち秒の表示はやめました。 自室にある時計を見ても秒の表示はなくても良いと思います。 ただし秒毎にブリンクする表示は付けようと思います。 しかし秒の点滅はない方が好ましいかも知れません。 寝室では夜間に明滅する光はかなり目障りに感じるものです。 周囲が暗くなったら点灯を止めるのも良さそうです。 ここでは秒の表示器は設けませんでしたが、必要があれば追加も難しくありません。 装飾的な時計としては秒の表示があると良いかも知れません。秒の表示を追加するには、秒カウンタの部分:U1のところに分の桁と同じ配線を追加すればOKです。

 カウント部分はすべてC-MOS ICを使って低消費電流に努めます。 カウントする基準クロックの周波数は1Hzですから、静止状態とほぼ同じですからC-MOS ICの消費電流は非常に少ない筈です。 電源電圧は乾電池3本分の4.5Vで設計します。 電池ですから徐々に低下しますがC-MOS ICですからほとんど支障はないでしょう。 3V以下まで十分動作できます。 NIXIE管ドライバのTTL-ICがうまくドライブできなくなったら交換どきです。

 表示部分はC-MOS ICではなくTTL-ICで作ります。 次回のBlogで扱いますがNIXIE管用のデコーダ・ドライバであるSN74141Nを使います。 SN74141NのようなTTL-ICは消費電流が大きいので電池での動作には向きません。 従ってTTL-ICを使った回路部分はAC電源が途絶えたら休止するような設計にします。 意外に難しいのは、動作している回路(時計のメイン回路部分)と、休止する回路(数字表示の回路部分)との分離にあります。 両方が動作している時は良いのですが、休止部分との切り離しがうまくないと電池で動作している部分から意図しない電流の流出が起こり電池の消耗を早めます。

 ここでは配線が少し面倒ですがANDゲートを使った自動切り離し回路を設けました。 TTL-ICの電源系統の動作が止まると接続部のすべてのデータラインがローレベルに落ちて電流の流れ出しを防ぎます。 秒で点滅するLEDもドライブ回路には2N7000というエンハンスメント・モードのMOS-FETを使うことで切り離せます。 このような対策を行なうことで時計のメイン回路部分はAC電源が途切れても継続動作し、わずかな消費電流で計時を継続します。

 時計としての回路はオーソドックスなものです。 まず、RTCモジュールから来る1Hz(=1秒)パルスを60進カウンタでカウントします。 60進カウンタから1分ごとに桁上げのパルスが出ますので、再び60進カウンタで「分」のカウントを行ないます。 1時間ごとに桁上げのパルスが出ますが、12時間モードでは12進カウンタで、24時間モードでは24進カウンタで「時間」の計数を行ないます。 12時間モード、24時間モードはスイッチで切り換えます。 時刻合わせは最も単純な形式です。 時刻合わせスイッチを「セット」の位置にすると、分のカウンタのところに1Hzが供給されるので60倍の速度で時刻が進んで行きます。同時に秒のカウンタはリセットされます。 表示がセットすべき時刻のところに来たらノーマル状態に戻します。 最長ではセットに24分近く掛かってしまいますが滅多に合わせる必要はないので簡単に済ませました。 やってみると操作性はいま一つなので改良した方が良いと思います。

 # あとは特に難しい部分はなです。 時計の回路なんて単純ですからね。(笑)

 【仮設表示器でテスト
 正式な表示部はこのあとNIXIE管で作ります。 ただし回路の設計検討には高電圧を扱うNIXIE管は好ましくありません。 検討中にうっかり高電圧に触ったら感電しますし、低圧部の配線と触れれば部品が壊れます。 開発中は動作の様子がわかれば良いので簡易なBCD表示(2進化10進表示)のディスプレーを仮付けしておきました。

 写真の例では13時33分を表示しています。 デジタル回路がわかる人には簡単ですが知らないと読めないでしょう。 教えてもらえば誰でもすぐわかるとは思いますけれど。 昔、BCD表示式時計を作ったのを思い出します。 あれはちょっと読みにくかったですね。(笑)

 このような表示器を仮設して時計の機能を確認しました。 この時計は12時間表示のときには11時59分のあと0時00分を表示します。 24時間表示の場合は23時59分のあと0時00分になります。  本番の表示器(次回予定)ではそのままの数字が表示されますからたやすく読み取れます。

テスト用クオーツ信号源
 出来上がった回路を作るだけなら苦労はありません。 しかし時計回路の開発は意外に面倒くさいのです。 論理回路が正しく設計され、きちんと時刻になったら桁上げ動作が行なわれるか確認しなくてはなりません。

 まさか回路をいじるたびに1時間あるいは12時間とか24時間待つわけにも行きません。 最終的には1Hzが得られるRTC基板モジュールを使いますが、テスト段階では発振周波数が色々変えられるSPG8651BというICを使いました。 例えば1000Hzを出力すれば1000倍早く計数が進むので迅速な動作確認ができます。

 このSPG8651Bも正確な1Hz(=1秒)が取り出せます。 内部には100kHzの水晶発振子が入っており精度も良好です。 しかし電池でバックアップするような時計には消費電流が大きすぎます。 測定したら約90μAほど流れました。 90μAなどわずかだと思われそうですが「RTC基板モジュール」ならずっと消費電流は少ないです。 回路の開発や動作テストにSPG8651Bは便利ですが、そのまま時計に使うのは適当ではありません。

RTCモジュールに換装
 正常に動作することがわかったのでRTC基板モジュールに交換しました。 交換しても支障なく動作してくれます。

 なお、手前の青色LEDは秒信号の点滅表示です。 本番の製作ではこの場所に付けるわけではありませんが、試作時の動作モニタ用です。

 本製作の際にはLEDの色もオレンジ色か赤色を使いNIXIE管の発光色と合わせたいと思います。 まあ、この辺はお好みですけれど。 青色でも緑色でも構いませんし、どうせAC電源が切れたら消灯させるのですから、180Vの電源もあるのでネオン管を使う方が相応しかもしれませんね。

RTC基板モジュール
 EPSON製のリアルタイムクロック:RTC-4543SAは表面実装型のICです。 32.768kHzの水晶発振子と分周回路、それとリアルタイムクロック回路が内蔵されています。 それを基板に実装した扱いやすいモジュールが売られています。

 マイコンを使ったクロックを製作するのでしたら、そのリアルタイム・クロック機能を有効に使うのが良いでしょう。 このモジュールのみ電池でバックアップします。 内部には時計とカレンダーの機能が内蔵されており、マイコン経由で事前に設定しておけば、バックアップさえしておけば時刻は継続して計数され続けます。 AC電源が復帰したら読み出せば時刻も復帰すると言った便利な方式も可能です。 今の時代ですから、時計の回路をハードウエア的に製作するよりもマイコンを使う方が合理的かも知れません。 そのような時には機能をフルに使うとFBです。

 もちろん、相応の機能を持ったプログラムを書き込んだマイコンが必要です。 自分で開発することも可能ですが、誰でも作れる製作ではなくなってしまうでしょう。 ここではRTC基板モジュールの1秒出力機能だけを使うことにしました。 フログラムの話は忘れてOKです。(笑)

RTC基板モジュールの使い方
 秋月電子通商で売っている商品には詳しい説明書が付いています。 読めばわかりますが、左図のような配線で使います。

 基板に実装済みですし、2.54mmピッチの端子が引き出されているので実験だけでなく実用にも使いやすくなっています。 通販で購入した袋には450円のラベルが付いていましたが値下げされているようです。 入手価格は300円でした。(2018年9月現在)

 32.768kHzの水晶発振子の手持ちも有ったのですが、総合的に見て価格相応の価値があると思います。 実際に32.768kHzの発振子で作ってみたのですが発振回路と1Hzへの分周回路を非常に低消費電流に作るのはなかなか困難です。 このRTC基板モジュールは周波数の調整ができませんので、あとは精度がどのくらいかというのが気になりますね。

RTCモジュールの精度は
 1Hz出力について、さっそく実測してみました。 写真のように0.2049マイクロHzだけ高いようです。 これは+0.2049ppmの誤差ということになります。

 一年は31,536,000秒ですから、約+6.5秒の誤差が考えられます。 実際には年間を通じた気温の変化や水晶発振子自体のエージング特性による変動があるのでもっと誤差は大きくなるかも知れません。 一般的に水晶発振子はエージングによって周波数が低下する傾向があるようです。そのため誤差が少なくなる可能性もありますし、行きすぎてマイナスの時刻誤差になるかも知れませんね。 こればかりは連続動作させてみないとわかりません。 それにしてもなかなか良い初期精度だと思います。 もっとも、無調整なのですからこのくらいの精度になっていなくては困りますけれどね。(笑)

本体回路の消費電流は
 AC電源が途絶えたときの状態を作り出して消費電流を実測してみました。
 実際に製作した回路の全消費電流をICの規格表から推定するのは意外に難しいのです。 各ICの標準値の積み重ねでは実際と10倍以上も違うことがあります。 やはり実測してみるのが確実と言うことのようです。

  仮設の表示器や青色の秒点滅LEDはすべて消灯しておきます。 テスターの最小電流レンジ:100μAフルスケールレンジで読み取っていますが指針はほとんど振れません。 1目盛りは2μAですが、その半分くらいしか指示しないのです。 RTCモジュールの分も含まれるので、もう少し大きいかと思ったのですが驚くほどの低消費電流でした。 C-MOS ICのスタティックに近い動作はほとんど電流を消費しないことがわかりますね。 この状態で計時の動作はきちんと行なわれています。

 アナログなテスタではこれ以上読めませんので、電源回路に1kΩを直列に入れ、その抵抗の両端電圧を測定して電流に換算してみました。 電圧測定にはデジタル・マルチメータを使います。 電源回路に1kΩも入れたらさぞかし電圧降下が大きかろうと心配になるかも知れません。 しかし1kΩの両端にはわずか1.3mVしか発生しませんでした。 電源電圧4.5Vに対して1.3mVなど誤差のようなものです。 1kΩに1.3mVというのは、そこに流れている電流はたったの1.3μAです。(実際には計時状態による変化があり、約1.0μA〜1.3μAで変動しています) 1kΩでは測定しにくいようなら10kΩにすると良いでしょう。

 単3電池3本でバックアップ・・というよりも常時動作させるつもりですが、これなら間違いなく1年以上の電池寿命が期待できます。 むしろ電池の長期保存特性の方が問題になりそうです。 あるいはもっと小さな電池・・たとえばボタン型電池など・・を使い、電池はバックアップ専用にすると言った方法も検討中です。 バックアップ専用なら電池の代わりに電気2重層コンデンサ(EDLC:スーパーキャパシタとも呼ばれる)という手もありそうです。 例えば1F(1ファラド)の容量なら数十日間のバックアップも十分に可能そうですから普通の停電対策でしたら支障ないでしょう。 電気2重層コンデンサなら電池のように交換の手間が掛かりません。 これで停電しても時刻合わせのいらないNIXIE管式置時計が作れそうですね。

                   ☆
 
 オーソドックスで平凡な時計回路ですが、実用になる時計が作れそうです。  過去に置時計は何回か製作しています。いずれも専用の時計用ICを使ったものでした。 有名な時計用のLSIとしては、ナショナル・セミコンダクタ社のP-MOS ICである、MM5311やMM5316がありました。 それらを使いLEDや蛍光表示管式の置時計を作ったものです。 これらのICはいずれも50/60Hzの電源ライン周波数を基準にしていました。 AC電源の周波数は日々監視されていて電力会社は前日の累積誤差を次日に補正しているそうです。 時計のように累積精度が問題になる機器では誤差が補正され続けるのはたいへん好都合です。
 瞬時的な安定度は水晶発振子に敵いませんが、累積精度ではAC電源を基準にした方が良いのかも知れません。現代の日本ではめったに停電も起こりません。 しかしここで使ったRTCモジュールも0.2ppmくらいの誤差なら十分実用的と言えます。 それにAC電源が途絶えても大丈夫なので停電対策だけでなく、場所の移動にも便利というメリットもあります。 この次は表示ドライバ回路とAC電源周りを扱いたいと思います。 ではまた。 de JA9TTT/1

つづく)←リンクfm

2018年10月9日火曜日

【回路】180V DC-DC Converter

180Vを作るDC/DCコンバータ
 【MC34063Aで高電圧を作る
 モトローラ(現・ONセミ)のDC/DCコンバータ用のICを使って昇圧電源を作ってみました。 まずは目論み通りの物ができたようです。 目的はNIXIE管点灯用の高圧電源です。

 スイッチング形式の電源が一般化したので、DC/DCコンバータ用のICにはたくさんの種類があります。 ここで使ったのはMC34063Aという8pinのICです。 使い易いためか様々な機器に使われているようです。 MC34063Aはチョッパー型のDC/DCコンバータ用ICです。 このICは降圧スイッチング電源に使われることが多いようですが、この例のように昇圧にも使えるほか、極性反転型の電源も作れます。 研究の価値があると思います。

                   ☆

 DC/DCコンバータと言えば真空管式の機器を車載などDC電源で使うために使っていました。 しかし真空管の時代も遠い昔の話になってしまいました。今では少数の愛好家が使うくらいのものでしょうか?(笑) 自身も電池管で作った送信機を移動運用するために作ったことがあります。 トランジスタを2石使ったジェンセン型でした。
 うまく昇圧はできるのですが、電圧は負荷状態によって変動して成り行き任せでした。 簡単な回路なので仕方がなかったと思います。 設計も厄介ですし昇圧トランスの巻線も昇圧比が大きいので2次側にたくさん巻いて・・・。w

 電流容量が必要ならロイヤージェンセンのような昔の形式も悪くないと思いますが、ここではせいぜい10mAも取れればよいので簡単にできる方式を模索することにしました。 以下は自家用の備忘です。 用途自体が特殊ですから興味のないお方には意味はなさそうです。  真空管式の無線機に使うにはかなりノイズ対策が必要です。対策できるとは思いますが大変でしょう。

 【180V DC/DCコンバータ回路図
 MC34063Aがよくできているので、回路はかなり簡単です。 出力電流が少ないので、昇圧コイルは親指の先ほどのサイズの既製品で十分間に合います。 電力として数Wが昇圧できれば良いため変換効率は追求していません。 昇圧比が大きいためか、だいたい70%程度のようでした。

 数10Vへの昇圧ならMC34063Aの単独で可能ですが、ここでは180Vへ昇圧します。そのためIC内部のスイッチング・トランジスタでは耐圧が足りません。 耐圧の高いスイッチング・トランジスタを外付けします。 最初の写真で上の方に簡単なヒートシンクとともに見えるのが外付けしたPower-MOS FETです。  あまり熱くはなりませんが連続運転するならヒートシンクを付けた方が安心です。

 外付けトランジスタは耐圧の高いNPN型トランジスタでも良いのですが、いまではPower-MOS FETが最適でしょう。 入手が容易なうえ丈夫で壊れにくいからです。 少々大げですが、耐圧:500Vで電流容量:10Aの2SK1248を使いました。これは手持ちの都合です。 ドレイン・ソース間耐圧が400V以上で電流容量が5AくらいのN-Ch MOS-FETで、なるべくON抵抗が低いものが適しています。 2SK1248は入手しにくいので代替品として秋月電子通商で売られているTK10A60D(東芝)など良さそうです。(@¥100-)

 昇圧コイルは240μHのインダクタを使いました。テスタで測った巻線抵抗は約0.4Ωです。 このコイルは変換効率に影響が大きいので良いものを使うべきです。 良いものとは、巻線抵抗が小さく、コアが大きくて磁気飽和しにくいDC/DCコンバータに向いたコイルです。 インダクタンスは220μH〜330μHくらいのものを使います。なるべく巻線の抵抗値が小さいものを使ってください。テスタの抵抗レンジで測定して1Ω以下のものが適当です。1A以上、2Aくらい流せるものにします。
 だいぶ前の話しですが、回路図にインダクタンス値のみ書いておいたら、非常に小さな外観形状のインダクタ(=コイル)を使われたお方がありました。 「アンタの言うようにならないぞ」というクレームがあったのです。 回路の動作は考えずにインダクタンス値にのみ着目したのでしょう。 お使いになったインダクタは巻線抵抗が大きくて抵抗器の作用も併せ持っていたのです。 小さく作りたいと言う意図はわかったのですが、小型のインダクタは巻線抵抗が大きいと言うことをご存知なかったんでしょうね。 DC/DCコンバータのコイルに豆粒のようなサイズを使う人はいないとは思いますが、インダクタンスだけでなく巻線抵抗や電流容量にも気を配ってください。

 整流用のダイオードは高速タイプが向いています。 1N4007などの50/60Hz用のダイオードも取りあえず使えます。 しかし整流する周波数が高いので高速整流用ダイオードを使うとロスが減らせます。 ここでは10DF8という手持ちを使いました。 類似のものは秋月電子通商などで安価に手に入ります。(例:PS2010Rなど) 逆耐電圧が400V、電流容量が1Aくらいの高速整流用ダイオードなら何でも良いです。

 Power-MOS FETのゲートとGND間に入っているPNPトランジスタを使った回路は非常に重要です。 Power-MOS FETのゲートとソース間には大きな静電容量が存在します。 そのため、OFFになったらゲートに残存している電荷を急速放電してやらないとスイッチングのロスが発生します。 件の回路はこれを改善するためのもので、OFFになったときゲートに残った電荷を強制的に放電する働きをします。 NPNトランジスタのようなバイポーラ型のパワートランジスタでは無くても良かったのですが、Power-MOS FETを使うためには必須の回路です。 1kΩをゲートとGND間に入れただけでも動作はしますが変換効率が悪くなります。 2SA495Yは2SA1015Yで代替できます。 特殊な部品は使っていないので必ず入れておきます。

 昇圧後の平滑コンデンサ:C4=2.2μFはできればスイッチング電源用が良いです。スイッチング電源は整流周波数が高いことから数10kHzで等価直列抵抗(ESR)が小さいものが適しています。ここでは実験なので一般的なアルミ電解コンデンサで様子を見ました。
 暫く動作させてみた範囲では、発熱など認められないので実験的には支障はないようでした。しかし長時間連続して運転するような機器では、このコンデンサによって機器の寿命が左右されるので専用品が適当です。

 MC34063Aは通販ほか秋葉原でも安価に購入できます。 私はしばらく前に購入したONセミ製を使いました。 2018年10月現在、秋月電子通商でHTC製のセカンドソースが40円で売られています。同じように使えるはずです。 ¥100均グッズに使われているという情報も聞きました。(シガレットライター型の車載用USB電源アダプタらしい?) 分解すると調達できるかもしれません。 上位互換品にNJM2360A/新日本無線があって、秋月電子通商で70円です。 ほかにIR3M03A/シャープも互換品なので手に入れば使えます。

# 他に難しそうな部品はないと思います。  簡単に集められるでしょう。

 【負荷テスト
 いくつか負荷抵抗の値を変えて電圧変動を確認しました。 だいたい10mAくらいの容量があれば十分なので最終的には18kΩを負荷にしてテストしてみました。 無負荷状態と比較して1.3Vくらい電圧降下が認められましたが、実際に予定している負荷は写真のようなNIXIE管ですからまったく支障はないでしょう。

 実際の負荷電流は約1.5mA×桁数なので、6桁としても9mAくらいです。10mA以内ですから支障ありませんね。 しかも私は4桁で済ませるつもりですので。(笑) 

 うかつに触ると感電する電圧なのでおっかなびっくり測定しました。 昔は真空管回路など平気でいじったんですが、昨今は高くても50V止まりです。 低圧回路のつもりで無造作に扱うと感電したり火花が散るので神経を使いました。 通電表示にネオン管でも点灯させておく方が良さそうです。 高い電圧に慣れなていないお方は特に気をつけてください。 球のリニヤアンプから見たら180Vなんて低圧電源ですが、触ればちゃんとシビレますので。(笑)

 【180Vが得られる
 調整式にしてキッチリ合わせても良いのですが、用途が放電管用ですから少々の違いは支障ありません。 固定抵抗で作っても良いでしょう。

 ここではR2=3.3kΩ、R3=470kΩで作りました。ほぼ計算通りの電圧です。 MC34063Aの内蔵基準電圧(1.25V)のバラツキもあるので数%の違いは予想されますが、無調整で実用上の支障はありません。

 もし調整式にするなら、R2として2.7kΩと1kΩの可変抵抗器を直列にしておけば良いでしょう。 神経質に180Vに拘る必要はないので固定抵抗で作って出力電圧を確認しておけば十分だと思います。

 【リプル波形
 リップルの波形です。 負荷が軽いと間欠的な動作になるようで、うまく同期が掛からないので綺麗な波形として観測できませんでした。 150〜200μS周期のリプル波形が認められます。

 波高値は0.3Vpp程度ですから、180Vに対するリプル含有率は0.17%くらいになります。 用途に対しては全く支障のないリプル含有率です。 しかし、受信機など通信機用の電源に使うなら一段と綺麗にする必要があるでしょう。 50/60Hzの高調波と違ってずっと高い周波数成分が含まれています。 ノイズの原因になるのでDC/DCコンバータ自体をよくシールドしたうえで、入・出力の部分にLC回路によるノイズフィルタを設けないと実用にならないはずです。

 このままだとこの電源を使った機器の周囲にノイズを撒き散らす可能性もありますが製作する際には幾らか対策を行なおうと思います。  ラジオにノイズが入ったら困ります。

ソ連製のNIXIE管
 負荷に予定しているソ連時代に作られたらしいニキシー管を点灯してみました。  型番は「ИН-12Б」です。 西欧のアルファベット表記では「IN-12B」になるようです。

 このNIXIE管はよほどたくさん作られたらしく、今でもかなり目にします。 容易に手に入るようですが、ぜひともソケット付きで手に入れておくようにしましょう。 ピン数が多いのでソケットの工夫は意外に厄介だと思います。

 180V電源で使い、電流制限抵抗(負荷抵抗)は33kΩでテストしています。 この状態で約1.5mAくらい流れます。 文字欠けなどないので良さそうです。 規格表を見ると最大電流は2mAのようですが、キリル文字の仕様書は良く読めないのでこんな程度にしておこうと思います。 NIXIE管の常識的な使い方ですので大丈夫でしょう。 hi

 デコーダ・ドライバには懐かしのSN74141Nを使うつもりですが、果たして40年モノのICが無事なのかちょっと心配がありますね。ソ連製のセカンドソースも手に入るようです。

                  ☆  ☆

 数年前だったと思うのですが、NIXIE管がブームになったとき纏めて入手されたという球を譲っていただきました。 近頃は貴重品扱いですから、そのまま使わずに保管しておけばいつかお宝に化けるかも知れません。 しかし使いにくいし半導体と違って寿命は短めですからそのうち見向きもされなくなるかも知れません。 このあたりどうなるか先が読めませんね。(笑)

 大切に保管すると言うのも一つの考えかも知れませんが、例によって「電子デバイスは使ってこそ価値がある」と思うので使うための検討から始めることにしました。 AC電源が前提なら、ニキシー管用に高圧巻線のある電源トランスを使うのが一番簡単です。 しかし、大した電流でもないので12Vあたりから昇圧できたら扱い易いかも知れません。 わざわざ特殊なトランスを購入しなくて済みます。 試してみたら簡単に必要な電圧と電流が得られることがわかりました。 なんだか面倒だなあと思っていた昇圧コイルも手持ちの既製品で間に合いそうです。 これなら高圧電源のことで悩まずニキシー管が使えそうですね。 ではまた。 de JA9TTT/1

ー・・・ー

追記:t-on/t-off比拡張回路の実験2018.10.31

 【t-on/t-off比の拡張回路とは?
 MC34063Aを使った昇圧電源回路の電流容量はコイルやトランジスタの大きさ(容量)だけでは決まりません。

 もちろん、過小な容量のパーツを使ったなら電流が取り出せなくて当然でしょう。 しかし、それ以外にスイッチング・トランジスタ・・・この場合Power-MOS FETですが・・・のオン時間(t-on)とオフ時間(t-off)の比が一定の値で頭打ちになることから取り出せる電流が制限されるようなのです。

 最初に示した回路でも今回の目的には十分だったのですが、もう少し余裕が欲しいと思って幾つか実験していました。 例えばコイルを替えてインダクタンスを最適化する、スイッチング周波数を変更してみるなど色々試みたのですがさしたる違い(改善)はありませんでした。 むしろ無闇に変更すれば効率の低下や、かえって取り出せる電流が減少するなどの副作用も目立ちました。 とりあえずの目的には間に合ったのでそれで一旦はオシマイにしたのです。

 Blogの公開から間もなくJA7LGC阿部OMよりコメントを頂きました。 それによりますと、類似の回路で実験されたようですがずっと大きな電流が取り出せているようなのです。 何が違うのか気になったのでお尋ねしたところ、ON-Semi社のサイトにあるApplication Note:AN920/D(←リンク)を参照してくださいとのご返事でした。 参照して改良点はわかったのでさっそく試すべきでしたが、あいにく実験回路は解体した後でした。 そこでもう一度製作してテストしたのがこの「追記」です。 あらためて、阿部OMありがとうございました。

 効果のほどはOMがコメントでお書きの通りで、ずっと大きな電流を取り出せるようになりました。 今回の製作ではそれほど大きな電流は必要としないため、概略の様子を見る程度でやめておきました。 初めから大きな電流を狙って部品の吟味を行なえば真空管式の受信機や小型送信機を動作させることも可能そうです。 この写真のままでは10mA以上の電流を取り出しての連続運転は適当でありません。 Power MOS-FETの放熱が不足しており昇圧コイルの容量も足りません。 もしNIXIE管の用途以外を目指すなら部品を選ぶ必要があります。

 【改良した回路図
 アプリケーション・ノート:AN920/Dのp21〜p22で示された回路を参考にしています。 MC34063Aの3番ピンとGND間に付いているコンデンサ:C1の放電を早くするような回路を追加する訳です。 PNPトランジスタ:Q3とダイオード:D3の回路がそれです。 この回路はスイッチング・トランジスタ:Q1のゲートに残存した電荷をOFF時に強制放電させて効率をアップする回路と同じように働きます。

 MC34063Aの発振回路は回路的な制約からスイッチング波形のデューティ比はある決まった範囲内でしか変化できないのでしょう。 そのためデューティ比を変えて負荷電流を増やそうとしても頭打ちになるようです。 そのため、周辺の部品を変えても取り出し得る電流は増加しなかったのです。 追加したトランジスタとダイオードにより、C1の放電が強制的に行なわれるようになることから取りうるデューティ比の範囲が広くなります。その結果ずっと大きな電流が取り出せるようになります。

 回路を追加する部分(Pin 3の周り)の電圧が低いためか、使用するトランジスタとダイオードはゲルマニウム型が指定されています。 AN920/Dによれば、2N524と1N270が使われています。 1N270は手持ちがあったので良いとして、かなり旧式な2N524など手に入れるのは難しいでしょう。 スイッチング回路の一種と考えてゲルマニウムの高速スイッチング用である2SA417で試してみました。 これで十分な改善が見られ2〜3倍の電流(180Vで20〜30mA以上)は容易そうでした。

 しかし2SA417や1N270を探し回る人が発生しても申し訳ないので、もう少し入手性の良いトランジスタで比較してみました。 その結果、このQ3の部分は特に高速トランジスタである必要はなく、むしろhFEが大きめのトランジスタの方が良さそうです。 幾つか試したのですが、2SB77(日立)や2SB56(東芝)のような低周波用のトランジスタでもhFEが100前後あるものなら十分そうでした。

 ゲルマニウム・トランジスタの特性上、あまりhFEが大きなものはベース遮断電流:Icboの関係からコレクタの漏れ電流が大きくなります。 そうなるとMC34063Aの発振回路は発振できなくなって旨くありません。 hFEが50以上150くらいまでのPNP型ゲルマニウム・トランジスタなら何でも良さそうです。可能ならコレクタ漏れ電流(Iceo)を確認しておけばベストです。

 またQ3のベース・エミッタ間に入っているダイオード:D3はQ3がゲルマニウム型なのでゲルマニウム・ダイオードにすべきです。 1N270はゴールド・ボンド型のゲルマニウム・ダイオードなので、国産品で同種の1S73Aや1S1007などが適当と思われます。 しかし入手が難しいので1N60や1K60でもテストしました。 これも支障なく代替可能でしたから入手容易な1N60や1K60で大丈夫です。 比較しても差は見られないので1N270を使う必要はありません。  もし選別して使用するなら逆方向の漏れ電流が小さいものが適当です。

 回路を最適化するため、コンデンサ:C1の値は2,200pF から3,300pFに変更しました。 追加したQ3のおかげで放電が早まってt-offの長さが固定されるためか変換効率はやや悪くなるようです。 負荷電流が大きい方で効率が良くなるのは好都合ですが、同じ部品を使っていても前よりも5〜10%ほど効率は下がるようでした。 DC抵抗の小さなコイルに交換するなどある程度の効率アップ対策は可能と思われます。

 【エクステンダ回路のトランジスタ
 追加したトランジスタとダイオードです。 たったこれだけの追加で取り出せる電流が倍増(倍以上も可)します。

 ゲルマニウム・ダイオードはまだ幾らでも手に入りますが、ゲルマニウム・トランジスタがネックかもしれません。 しかし、PNP型でhFEさえある程度の大きさがあれば何でも大丈夫そうですから何とか手に入るでしょう。  トランジスタカタログを調べて2SA、2SBのトランジスタから適当なものを探してください。 拙宅では昔々自作に使った名残の足の短い2SB77とか2SB56などが出てきました。 まさかこんな用途で再活用するとは思いもしませんでした。(笑)

 写真の2SA417は見かけは良いのですが、トランジスタの構造上hFEが低いので最適とは言えませんでした。  Mesa型なので飽和電圧が大きいのもよくないのかも知れません。 見かけではなく性能(hFE)で選ぶべきです。 電圧の低い回路部分で使っていますので耐圧やコレクタ損失などは特に気にしなくても大丈夫です。

                   ☆

 MC34063Aを使った高電圧なDC-DCコンバータは部品も少なく変換効率もまあまあだったので、もう少し電流が取れたらFBだと思っていました。 Blogに頂いたコメントのお陰で電流アップできました。 これでもう少し幅広い用途に使える可能性も出てきたように思います。 ノイズ対策はそれなりに厄介かもしれませんが、0-V-1とかQRPpな送信機くらい動作できるかも知れません。 12Vの電源なら自動車から取り出すこともできるのでフィールドで真空管式の無線機を楽しむことができるかもしれませんね。 ではまた。 de JA9TTT/1

(実験するお方は、くれぐれも高い電圧に気をつけてください)

参考:ニキシー管の活用法にリンク→こちら

(おわり)nm